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Phase Space of Tokamak Edge Turbulence, theL-H Transition,
and the Formation of the Edge Pedestal
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Based on three-dimensional simulations of the Braginskii equations, we identify two main parame
which control transport in the edge of tokamaks: the MHD ballooning parameter and a diamagn
parameter. The space defined by these parameters delineates regions where typicalL-mode levels
of transport arise, where the transport is catastrophically large (density limit) and where the pla
spontaneously forms a transport barrier (H mode). [S0031-9007(98)07608-X]

PACS numbers: 52.55.Fa, 52.25.Fi, 52.30.Jb, 52.35.Ra
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The tokamak edge region, comprising the transitio
zone from the inner, hot core plasma to the outer, co
scrape-off layer, exerts vital control over the plasma di
charge through its role in theL-H (low-high confine-
ment) transition [1,2], the density limit [3], and the edg
temperature pedestal. We claim here, based on thr
dimensional simulations of the Braginskii equations, th
these phenomena are fundamentally linked to the d
pendence of the turbulent edge transport on two d
mensionless parameters: the MHD ballooning parame
a ­ 2Rq2dbydr and a diamagnetic parameterad (de-
fined below). The space spanned by these parameter
shown in Fig. 1. In the weak diamagnetic limit (smal
ad), the simulations show a dramatic rise in the tran
port with increasinga that leads to high transport levels
even at smalla values well below the limit of ideal bal-
looning instability [4,5]. We associate this behavior with
an effective density limit beyond which stable tokama
operation is not possible. At higherad , 1, on the other
hand, thea dependence of the turbulence is reversed, wi
small but finite values ofa leading to a strong suppres-
sion of transport. In this regime a local increase in th
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pressure gradient, above a threshold ina, causes are-
duction of the transport. Since such a reduction wou
naturally lead to a further steepening of the edge pre
sure gradient, this region of highera andad is unstable
to the spontaneous formation of a transport barrier. T
boundary of this unstable domain defines the onset co
dition for the L-H transition in our model. Finally, the
global stability of the edge pedestal and the relative rol
of finite a and E 3 B shear are explored in dynami-
cal simulations of the barrier formation process. The
simulations confirm that theE 3 B shear effect can sta-
bilize turbulence during the formation of the barrier [6,7
We also find, however, that, for smalla, the E 3 B
shear alone is not sufficient to trigger a transition due
the strong positive dependence of transport on the plas
pressure gradient.

The simulations are carried out in a poloidally an
radially localized, flux-tube domain that winds around th
torus [8]. Assuming a shifted-circle magnetic geometr
the nonlinear equations for perturbations of the magne
flux c̃, electric potentialf̃, density ñ, electron and ion
temperatures̃Te, T̃i , and parallel flowỹk are
âf≠tc̃ 1 ad≠yc̃ s1 1 1.71hedg 2 =kff̃ 2 ads p̃e 1 0.71T̃edg ­ J̃ , (1)

=' ? dt ='sf̃ 1 tadp̃id 1 Ĉs p̃ 1 G̃d 2 =kJ̃ ­ 0 , (2)

dtñ 1 ≠yf̃ ­ F̃, F̃ ­ enĈsf̃ 2 adp̃ed 2 ey=kỹk 1 adens1 1 td=kJ̃ , (3)

dtT̃i 1 hi≠yf̃ ­
2
3 fF̃ 1

5
2 en tadĈT̃i 1 ki=ks=kT̃i 1 âhi≠yc̃dg , (4)

dtT̃e 1 he≠yf̃ ­
2
3 fF̃ 2

5
2 enadĈT̃e 1 0.71adens1 1 td=kJ 1 ke=ks=kT̃e 1 âhe≠yc̃dg , (5)

dtỹk ­ 2eyf=ks p̃ 1 4G̃d 1 s2pd2a≠yc̃g , (6)
© 1998 The American Physical Society
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FIG. 1. Edge plasma phase space.

where =k ­ ≠z 1 â $z 3 ='c̃ ? =', dt ­ ≠t 1 $z 3

='f̃ ? =', =
2
' ­ f≠x 1 Lszd≠yg2 1 ≠2

y , Ĉ ­
fcoss2pzd 1 Lszd sins2pzd 2 eg≠y 1 sins2pzd≠x, Lszd ­
2p ŝz 2 a sins2pzd, G̃ ­ 2gpfĈsf̃ 1 tadp̃id, 24seyy
end=kỹkg, J̃ ­ =

2
'c̃, p̃a ­ ñ 1 T̃a , p̃ ­ s p̃e 1 tp̃idy

s1 1 td. The time (t), perpendicular (x, y),
and parallel (z) normalization scales aret0 ­
sRLny2d1y2ycs, L0 ­ LzfC2hkys4py

2
At0dg1y2, and Lz ­

2pqaR. The diamagnetic and MHD parameters a
ad ­ rscst0yfs1 1 tdLnL0g, a ­ q2

aRbyLp . Other
parameters aret ­ Ti0yTe0, ha ­ LnyLTa

, e ­ ayR,

en ­ 2LnyR, ey ­ e
1y2
n ys4pqad, â ­ s2pd2aLpyLn,

LnyLp ­ f1 1 he 1 ts1 1 hidgys1 1 td, ke ­
1.6a

2
dens1 1 td, ki ­ 0.064smpymid1y2t5y2a

2
dens1 1

td, gp ­ 0.16p2q2
aki . The parallel coordinate values

z ­ 0 andz ­ 61y2 represent the outboard and inboar
midplanes, respectively. The transverse flux coordina
x, y correspond to local radial and poloidal variable
Unless noted otherwise, we consider the valuesŝ ­ 1,
t ­ 1, en ­ 0.02, e ­ 0.2, qa ­ 3, hi ­ he ­ 1, and
miymp ­ 2.

The application of a fluid model to tokamak edg
discharges is reasonable because the mean-free pat
electrons le is typically smaller than the connection
length Lz . For parameters at theL-H transition in the
case of ASDEX-U [9], for example,leyLz , 0.05 (R ­
165 cm, a ­ 50 cm, B ­ 2.5 T, Te ­ 100 eV, n , 3 3

1013 cm3, Zeff ­ 2, q ­ 4). Further, sincenpi,e ¿ 1
(in the ASDEX-U example,npe . 20), trapped particles
should not play a major role. Finally, the dominant mode
in our simulations satisfyk'ri ø 1.

Figure 2(a) shows the normalized, poloidally averag
ion energy flux Gpi . 2k p̃if̃yl versus a for various
values ofad. For smallad , 0.5 the transport increases
strongly with increasinga, while for largerad , 1, the
transport at highera is suppressed. This reversal reflec
the fact that the turbulence in the small and largead

cases is driven by different mechanisms with contra
dependences on electromagnetic effects.
re

d
tes
s.

e
h of

s

ed

ts

ry

(a) (b)

FIG. 2. (a) Gpi sad for ad ­ 0.25 (squares);ad ­ 0.5 (tri-
angles);ad ­ 0.75 (asterisks);ad ­ 1 (diamonds); (b)Gpi send
for ad ­ 1 anda ­ 0.05 (solid line); a ­ 0.6 (dashed line).

In the smallad case, the turbulence results mainly from
the nonlinear development of resistive ballooning mod
[8]. The enhancement of the transport at highera in
this case is due to the dependence of the turbulence
magnetic field perturbations [4]. For very smallad &

0.3 the transport becomes extremely large even at sm
a , 0.3. The evolution of the edge into this regim
would lead to a large flux of plasma from the cor
into the edge and a possible radiation collapse. Sin
ad ~ Ty

p
n while a ~ nT , the limit of small ad and

finite a is consistent with largern and smallerT , and
in Fig. 1 we label the rough boundary of this forbidde
zone as a “density limit.” In agreement with this, th
edge discharge parameters at the density limit in ASDE
U are similar to those given previously, aside from
lower temperature (Te ­ 50 eV) [9], with corresponding
values ofad , 0.3 and a , 0.5. The energy diffusion
rate predicted by the simulations for these parameters
immense:D ­ Gpi D0 with D0 ­ L2

0yt0 , 60 m2ys and
[see Fig. 2(a)]Gpi , 1. This picture is also consisten
with observations on Alcator-C that confinement degrad
as the density limit is approached [3].

In the casead , 1, resistive ballooning modes are
weakened by diamagnetic effects [8], and the turbulen
is predominantly caused by a nonlinear electron drift wa
instability [8,10]. This instability relies on the nonlinea
production of poloidal pressure gradients, which (unlik
radial gradients) excite unstable drift waves even in t
presence of the equilibrium magnetic shear [10]. T
drift waves grow due to the convection of the electro
pressure across the magnetic field, which generate
parallel pressure gradient=kpe and an associated paralle
current through Ohm’s law. This process, however,
inhibited by electromagnetic effects at very smalla. This
is because the electrons at highera convect the magnetic
field together with the electron pressure, leading to
large reduction of=kpe relative to the electrostatic,a ­ 0
limit. This effect can be illustrated by a linear analys
4397
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of a constant ambient density gradient in they direction
n ­ n0

0y. The resulting drift wave growth rategr sk'd
is shown in Fig. 3 for various values ofa (we take
adn0

0 ­ 1, kk ­ 2p ŝ, t ­ 1, hi,e ­ 0, en ­ 0). The
strong suppression with increasinga is consistent with
Fig. 2(a). A similar effect was invoked in Ref. [11].

To estimate the level ofa at which the suppres-
sion occurs, note from Eq. (1) that the magnetic pe
turbations become important in our normalized uni
when s2pd2a≠t , =

2
', or with ≠t , vpe , adk', a ,

k'yfads2pd2g. To obtain k', note that the vortic-
ity equation (2) implies≠t=

2
'f̃ , adk3

'f̃ , =kJ̃, or
with J̃ , =kf̃ (from Ohm’s law) and=k , 2p ŝ (the

inverse shear length),k' , s2p ŝd2y3a
21y3
d . As a re-

sult, electromagnetic effects become important fora ,
ŝ2y3s2padd24y3 , 0.1 (given ad , 1, ŝ , 1), consistent
with Figs. 2(a) and 3.

Returning to the issue of transport barrier formation
in a stable system an increased pressure gradient le
to enhanced flux, which in turn acts to flatten th
gradient. The gradient therefore evolves to a state
which the energy flux and the sources balance.
transport barrier can form spontaneously if the flu
decreaseswith increasing gradient. In dimensional units
the particle flux (comparable toGpi ) can be written
asG ­ sD0n0yLndGnsad , a, en, . . .d. The dependence on
the gradient enters explicitly through the scale leng
Ln, as well as implicitly through theLn dependence of
D0, ad, a, etc. Excluding the variation ofGn, the flux
has a strong positive power dependenceG , n02

0 . The
dependence ofGn on n0 must therefore reverse this for the
system to be unstable to the formation of a barrier. Th
dependence, neglecting the weak variation ofad , n01y4,
appears mainly througha , n0 anden , n021. For small
ad , Gn is insensitive toen and increases sharply with
a [see Fig. 2(a)], which reinforces the stability of the
system. No barrier formation is therefore possible fo
smallad.

FIG. 3. gsk'd for a ­ 0 (solid line); a ­ 0.15 (dotted line);
a ­ 0.3 (dashed line);a ­ 0.6 (dot-dashed line).
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At higherad , 1, on the other hand, thea dependence
of Gpi s,Gnd shown in Fig. 2(a) is reversed, allowing
the possibility thatdGnydjn0j could change sign. The
suppression with increasinga in this case must compete
with then02 dependence of the normalization, as well as
strong destabilizing trend due to decreasingen ­ 2LnyR
[8]—see Fig. 2(b). To determine the net dependence
the scale length, simulations were carried out in the ran
en , 0.01 0.04. These simulations show thatdGnydjn0j

indeed changes sign along the boundary separating
L and H mode regimes in Fig. 1. This prediction i
supported by a study of Alcator C-Mod edge paramete
at theL-H transition [12].

Poloidal E 3 B shear flows, generated locally by th
turbulence, lead in part to the large transport reducti
with increasing ad seen in Fig. 2(a). The ordering
on which our model is based, however, excludes
contribution to theEr shear that can arise from profile
variations beyond the intrinsic turbulence scale. Th
possibly understates the importance ofEr shear since such
profile shear will reinforce the stability of the system
during the steepening process [6,7]. To address t
issue, we carried out simulations of the edge pedesta
the context of a simple model. The model includes
source and sink (radially periodic) in the density equati
(3), intended to represent neutral particle fueling in th
edge. The strength of the source is chosen so that
ad , 1 and a ø 1 the source produces only a sligh
steepening of the profile before the system comes i
equilibrium. We then slowly increasea with time. With
increasinga the transport drops and the source causes
gradient to steepen, enhancing the turbulence until a n
equilibrium is reached. At a critical value ofa the region
of maximum pressure gradient exceeds theL-H threshold
condition and the profiles spontaneously begin to steep
The subsequent evolution depends on the parameteren: at
en ­ 0.02 it is smooth, while aten ­ 0.01 it is bursty.
Figure 4(a) shows the fluxGpi std from a simulation that
includes the source in the latter case withad ­ 1 and
(initially) a ­ 0.05. At t ­ 1550 the source is turned on
and the value ofa is slowly increased at a ratedaydt ­
2.5 3 1023. This causes the transport to drop gradua
until t ­ 1630 (a . 0.25), when a burst of turbulence
produces a largeE 3 B poloidal sheared flow. This can
be seen in Fig. 4(b), which shows the time evolutio
of the root mean square poloidalE 3 B velocity ȳEy

(dotted line), ion diamagnetic velocitȳydiy (dashed line),
and total ion rotation̄yiy ­ yEy 1 ydiy (solid line). This
E 3 B flow sharply reduces the flux and induces
localized transport barrier (much smaller than the b
size), which in turn leads to a steepening of density profi
that is reflected in a slow rise of the ion diamagnetic flo
from 1650 to 1750. At t ­ 1750 (a . 0.5) the barrier
is disrupted by a large scale resistive ballooning mo
which again produces strongE 3 B sheared flow [see
Fig. 5(a), solid line] and suppression of the transport.
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FIG. 4. (a) Gpi vs t; (b) ȳiy (solid line); ȳdiy (dashed line);
ȳEy (dotted line).

similar event att . 1820 leads finally to the formation of
a global transport barrier att ­ 1920. Beyond this, the
diamagnetic velocity in Fig. 4(b) increases monotonical
as the profiles continue to steepen, while the total io
flow slowly decays due to the effect of magnetic pumpin
Sinceyiy ­ yEy 1 ydiy . 0, this forcesȳEy to increase
in proportion toȳdiy , as seen in the figure. The growth
of yEy, the radial profile of which is shown in Fig. 5(a)
(dotted line) at a late time, reinforces the bifurcatio
of the system by suppressing turbulence in the pedes
everywhere except in a small region surrounding th
maximum pressure gradient whereE0

r . 0.
The steepening of the profiles following the transitio

is not limited by the idealn ! ` MHD stability limit.
This is shown in Fig. 5(b), which is a plot of the ion
pressure profile at an early (dashed line) and late (so
line) time in a simulation withen ­ 0.02, ad ­ 1. The
a value at the center of the pedestal,asx ­ 0d ­ 1.6, is
well beyond the first stability limit (a ­ 0.8 at ŝ ­ 1).
Long wavelength ideal modes withky , 1yLp are stable
because the radial localization of the pedestal gradie
greatly weakens the drive of such modes relative to t
stabilizing contribution of magnetic line bending. Shorte
wavelength modes withky * 1yLp are stabilized by a
combination ofvpi andE 3 B shear effects.

In conclusion, while we expect the thresholds of Fig.
to depend on factors not discussed here, in particul
ly
n
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FIG. 5. (a) E 3 B flows before (dashed line), during (solid
line), after (dotted line) transition; (b) early (dashed line), lat
(solid line) pi profiles.

TiyTe, noncircular geometry, and̂s, the framework on
which they are based should be robust.

We acknowledge extensive discussions with T. Car
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