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Collisionless nonideal ballooning modes

Robert G. Kleva and Parvez N. Guzdar
Institute for Plasma Research, University of Maryland, College Park, Maryland 20742-3511

(Received 15 June 1998; accepted 22 September) 1998

The nonzero inertia of the electron is shown to destabilize pressure-driven ballooning modes in
collisionless tokamak plasmas that are stable in the ideal magnetohydrodyri®hiD)
approximation. The effect of the electron mass is characterized by the collisionless electron skin
depthde=c/w,e, Wherewp= Jamnée?/m, is the electron plasma frequency. The growth rate of
electron inertia ballooning modes increases with the magnitude ,oind also with the magnitude

of the ratio 8 of the plasma thermal pressure to the pressure in the confining magnetic field.
© 1999 American Institute of Physid$1070-664X99)00501-7

I. INTRODUCTION ballooning moded! 4 Since this classical collisional trans-
port of the current destabilizes ballooning modes, small scale
The most important limitation on the performance of tyrbulence has been proposed as a destabilization mechanism
large tokamaks is that imposed by disruptions. The fusioRnrough the generation of a turbulent current diffuston.
power output from a hot, magnetically confined plasma in\yhen g<g,,.,, classical resistive ballooning modes with

creases as the square of the ion density, while the energyqgerate toroidal mode numberare either stable or only
input required to contain the particles rises with the strength

e S weakly unstable with a small growth rate. But for larger 3
of the confining magnetic field. Therefore, the rgfimf the

- . closer tof3jzea in Magnitude, but still smaller, moderate
plasma thermal pressure to the magnetic field pressure is Agistive balloning modes grow much more rapidly. For a

important figure of merit characterizing a tokamak’s perfor- : . . . .
. : large tokamak with parameters given in Tablenajor radius
mance as a fusion reactor. Attempts to improve tokama . . . o
o=260 cm, minor radiug=80 cm, toroidal magnetic field

erformance by increasing are thwarted by disruptions.
s y g y p B4=40 kG, central temperaturé=10 keV, and plasma

Tokamak discharges can operate stably only at valugs of ) - . - :
e 1-3 ol density n=5x10cm™3), the electron-ion collision time
below a critical limit B;;.~ > When 8 exceeds this limiting L v . )

value, then there is a sudden, catastrophic loss ofei~400us. Resistive MHD is valid for time scales much
confinemend longer than the electron-ion collision time. However, the

Most theoretical and computational analyses of tokamakhermal quench time i limit disruptions is observed to be
stability at highg are based on the ideal magnetohydrody-from 100 to 400us? Furthermore, just prior to the thermal
namic (MHD) equations. A representative sample of idealquench rapidly growing moderate fluctuations are often
MHD analyses of tokamak stability is given in Refs. 4—10.seen, with a growth time that can be less thanus@ Thus,
These analyses do indeed show that, in the ideal MHD apthe growth time of the precursors ® limit disruptions and
proximation, there is a linear stability limit i#. The plasma the thermal quench time are less than an electron-ion colli-
is stable for values oB smaller than som@j,.,, Where the  sion time. As a consequence, collisions in the hot central
magnitude ofBigea depends on the details of the toroidal plasma cannot play a role i@ limit disruptions.
plasma configuration, whereas the plasma is ideally unstable However, a collisionless plasma is not an ideal plasma,
when B> Bigea. Experimental observations have verified pecause the nonzero mass of the electrons is neglected in the
that tokamak discharges cannot be operated stably at valugfsal MHD approximation. Electron inertia has been found
of B larger than the ideal limiBjge. However, these obser- ¢, oy an important role both in collisionless magnetic
vatlon.s also 'showlthat tokamak plasmas can also be unﬁat}]@connectioﬁ?‘”and in the generation of magnetic fields by
to major c.jlsrupt|onslv$/herﬁ<,8idea|, contrary to the pre- -, isionless dynam®. In this paper we investigate the
dictions of ideal MHD-“ Typically, the experimentally de- . - . -

stability of collisionless, highB tokamak plasmas, retaining

termined limit in i+, is roughly one-half the limip; . .
B Bt gnyy Bideal the physics of the nonzero electron mass. We find that elec-

predicted by linear ideal MHD calculations. Furthermore, fort inertia destabl ballooni d ith moderate t
values of B< Bi; tokamaks experience ming disruptions ron inertia gestablizes baflooning Modes with moderate tor-
oidal mode numben in tokamak plasmas that are stable in

that exhibit the same characteristics as mgadisruptions,

but are less violent so that the plasma can recover withodf® ideéal MHD approximation. Thus, even collisionless toka-
termination of the discharge. mak plasmas below the idegllimit, B<Bjseq, are unstable

Since tokamak plasmas are observed to be unstable Bgcause of the nonzero electron mass. The effect of the elec-
values ofB< Bigeq, NONideal effects in Ohm’s law may have tron inertia is characterized by the collisionless electron skin
an important impact on stability. The electrical resistance oflepth de=c/wye, Where wpe=+\47ne’/m,. The growth
the plasma, caused by binary Coulomb collisions of the curratey of electron inertia ballooning modes increases with the
rent carrying electrons with the ions, is known to destabilizemagnitude ofd,. The growth rate also becomes larger as the
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TABLE I. Tokamak parameters. B/Bo—B, andp,/pmo— pm- In terms of these normaliza-

tionsL, By, andp,o, We can define the Alfue speedV

Ro 260 cm A 1o Jaet
a 80 cm =(Bgldmpme) ' and the Alfven time 7o=L/V,. Then,
B, 40 kG making the replacements r,—t, V/Vpy—V, P/(BS/47T)
T 10 keV —P, 47wLJIBoc—J, and 9C?rpldmll=1pl7,=S 1—7y
n 5x10%cm 3

with the resistive timer,=4mL?% 5c? and the Lundquist
number(magnetic Reynolds numbeB=r,/7,, the gener-
alized Ohm'’s law(4) can be written in the following normal-

toroidal mode numben increases, as well as wheh in- ized form:

creases. d(B—d2V?B)/dt=Vx(VXB)—d2Vx[V-(VI+JIV)]
In Sec. Il we extend the MHD equations to include the 5

nonzero mass of the electrons in Ohm’s law. We show that +nV°B. )

the electron mass manifests itself in the induction equationy, these normalized units. the MHD equations for the mo-
for the magnetic field through the collisionless electron Ski”mentumUEpmV pressure, and mass densityZre

depth. The highB equilibria used in our stability analysis are

described in Sec. II. For the purpose of comparison, we first  dU/dt+V-(VU)=IxB—VP+uV?U, (6)
gor}5|d'er the ideal and res!stlvg linear stab!llty of these equi- JPIAt+V-(VP)=0, @
libria in the MHD approximation, neglecting the electron

mass, in Sec. lll. Then, in Sec. IV, the effect of electron dpmldt+V-U=0, (8)

inertia on the stability of ballooning modes is studied. The here . is the viscosit
dependence of the growth rate on the magnitude of the w ColrLlsl'der t\gro'dall Y. cometry defined by coordinates
electron skin depth is investigated. In addition, the functional ! ! g y ! y '

dependence of on 8, the toroidal mode number, and the (R,¢,2), whereR is the distance from the major axis of the

viscosity is also presented. The potential impact of thes%ﬁéutso’folisdg}ea\éelrgcgud'stngfhglf;geth; ;nn?;oirsasxlﬁ}oag‘n[ze db
modes on the stability of higl8 tokamaks is discussed in . angie. Suppo: P y
Sec. V. a toroidal, ideal conducting wall with a rectangular cross

section in the poloidal plane, which is centered & (
=Ry,z=0) with a half-width given bya. At the conducting
Il. EQUATIONS AND EQUILIBRIUM wall boundary, the normal component of the magnetic field

The MHD equations are a set of coupled equations for> 2610 Br=0 atR=Ry*a, B,=0 atz==*a) and the flow

the magnetic field, mass velocity/, pressuré®, and mass velocity is zero.

densityp,,. The time rate of change of the magnetic field is _, . The_normahzed MHD equathnéi)—.(B) are solved_ n
. . : . this toroidal geometry on a Cartesian gridRrandz. Spatial
given by Faraday’s induction equation

derivatives are evaluated to fourth order in the grid spacing
A while time stepping is second order accurate in the time
stepAt with a leapfrog trapezoidal scheme. The number of
grid points used in th&—z plane is varied to ensure that the
numerical results are insensitive to this number.
Axisymmetric equilibria, independent of the toroidal
angle ¢, are obtained dynamicafly by solving the normal-
VXB  me[dd ized MHD equations in two dimensions in the poloidal plane
E+ —~ = _Z(E +V-(VJ +JV)) +nJ, (2)  to obtain force balancetxB=VP. Equilibria are character-
ne ized by the magnitude of the peak central pres®yg, and
where the plasma currentis obtained from Ampere’s law, the total poloidal magnetic fluf . The quantityA ¢/(aRy)
is a measure of the average poloidal magnetic field. In terms
VxB=4mJic. 3 of P, andAy, we define the ratig,q of the plasma pres-
Combining Eqgs(1)—(3), we obtain the generalized induction sure to the poloidal magnetic field pressure as
equation including the nonzero electron mass,

B _ VXE 1
E_ c ’ ( )
where the electric fieldE is determined by Ohm’s law.
Ohm’s law, including the non-zero electron massas well
as the resistivityy, is given by°

) BpoI: Pmax/(A‘MaRo)z- 9

Esz(VxBHdé V'8 - 4_7TV><[V.(VJ +JV)]) An example of an equilibrium witf8,,= 1 is shown in Fig.
at at c 1. This figure is a plot of the pressuke(solid line) and the
2 safety factorq (dashed ling profiles as a function oR

+ EVZB, (4)  through the mid-plang=0, for a torus with major radius

Ro=3, minor half-widtha=1, and inverse aspect ratio
whered.=c/ wp is the electron skin depth with the electron =a/R,= 3. The central safety factaj,= 1.1 at the magnetic
plasma frequencyo,= J4mne?/m,. The nonzero electron axis, andq increases monotonically from the magnetic axis
mass appears in E4) only through the electron skin depth to the wall, which is a magnetic separatrix. Over the range in
d.. Suppose that the spatial variables, the magnetic fieldR where the pressure gradient is nonzero, the magnetic shear
and the mass density are normalized as folloW§—V, is significant because thgprofile is changing significantly.
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FIG. 2. Lundquist number. The growth rageis plotted as a function of the
2.0 2.5 3.0 3.5 4.0 Lundquist numbes for equilibria with B,=1,2,3,4,5. The points labeled
by S=« are obtained from the ideal MHD equations.
R

FIG. 1. Equilibrium. The pressurP (solid line) and the safety factoq . .

(dashed ling are plotted versus the major radial coordingtén the mid-  ~0.1us. Thus, the growth time is only aboutuds. As B

plane ¢=0), for an equilibrium withB,,= 1. decreases, the magnitude ¢fdecreases and becomes in-
creasingly dependent on the magnitudesofWhen g, is
reduced to 4, the mode is still unstable in the ideal MHD

The normalized pressure is equal38,,,, whereg,, is the  approximation. The lack of points &= in Fig. 2 when
ratio of the peak plasma pressure to the pressure in the toBy,<<4 does not necessarily mean that the mode is stable in
oidal magnetic field. For the equilibrium shown in Fig. 1, the ideal MHD limit. The dissipation in the equations damps
Bror=1.3%. Equilibria with different values o8, are ob-  grid scale noise in the simulations. Whgy is reduced to
tained by changing the peak pressig,,. 3, there is growing noise at the grid scale in the =0
Equations describing the stability of these equilibria tosimulation, although a coherent mode structure still grows
three-dimensional perturbations are obtained by linearizingeveral orders of magnitude along with the grid scale noise.
Egs.(5)—(8) about an equilibrium with a given pressure pro- In addition to our full two-dimensional linear MHD code, we
file and current profile. All perturbed quantities are taken tohave also tested stability with a code that utilizes the bal-
vary in toroidal angle as~'""?, wheren is the toroidal mode looning approximation to solve the one-dimensional linear
number. For an arbitrary initial perturbation with mode num-ballooning mode equatioff,using the average pressure gra-
ber n, the linearized equations describing the perturbatiordient over the region from OF,5,t0 0.9 o ON the largeR
are evolved in time. In the long-time asymptotic limit a nor- side of the magnetic axis in Fig. 1 where the two-
mal mode forms in which the perturbation amplitude variesdimensional structure of the modes is localized. The results
exponentially in timeg”', wherey is the growth rate of the from this code demonstrate that tit,=3 equilibrium is
mode. Although both the equilibrium pressure and currentndeed ideally unstable, as is tj#g, =2 equilibrium, but the
are retained in the analysis, the gradient in the equilibriumBp,=1 equilibrium is not. Thus, the ideal stability limit,

pressure is the dominant source of instability. Bpolidear lI€S in the range & B igear<2- AS By is reduced
below the ideal limit,y becomes increasingly dependent on

the magnitude of.

Ill. IDEAL AND RESISTIVE BALLOONING MODES The dependence of the growth rate on the toroidal mode

For the purpose of comparison, let us first consider theaumber is shown in Fig. 3. This figure is a plot ¢f nor-
ideal and resistive stability of higiB,, toroidal plasmas, malized tor,, as a function ofp=S"1 with u=7 in the
neglecting the electron mass. Figure 2 is a plot of the growttB,,=1 equilibrium, for three different mode numbers,
ratey, normalized to the Alfve time 7, of ann=10 mode n=10, 20, and 30. Whem=10"*, the n=10 mode is the
as a function of the Lundquist numb8e=1/7 when d§=0 fastest growing mode. But the growth rate of the=10
and u= 7, for five equilibria with different3,,. From the mode decreases agdecreases. In contrast, the growth rate
bottom of the figure, the curves are for equilibria with of the n=20 and 30 modes initially increase gsdecreases
Bpa=1, 2, 3, 4, and 5. The actual data points are given by théelow 104 When 7 is reduced to %10 °, the n=30
solid circles in Fig. 2; the data points are connected bymode is the fastest growing of the three modes. For a given
straight lines for ease of visualization. The points labelled bynode numbern, the growth ratey has a peak aty
S=o are forn=u=0. Wheng,=>5, the growth rate of the = 7,,(Nn), and the resistivity at the point of maximum
n=10 mode is nearly independent & and the mode is growth »,,,{(Nn) decreases asincreases. As we will show in
unstable in the ideal MHD approximation. The growth rate isthe next section, the stabilizing influence of the viscosity is
quite large; the growth time is just a little more thanrl0  the cause of the decreaseqirfor 7> 7,,.,(Nn). In the largen
For the tokamak parameters given in the Tabler),  one-dimensional ballooning mode equatianand n appear
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FIG. 3. Resistive ballooning mode. The growth ratés plotted as a func-
tion of the resistivity » for toroidal mode numben=10 (circles, 20
(squarey and 30(triangles, for a plasma withu =7 and By=1.

only in the productyn? and, thereforey is a function of
»n2.13 Similarly, the results of our two-dimensional simula-
tions in Fig. 3 show that the peak inshifts to smallery as
nincreases, and that the magnitude of the peak growth rate is R
nearly the same.

FIG. 5. Mode structure. The real part of the pressure perturbation in a
Bpo=1 equilibrium is plotted in the poloidal plan&(z) for toroidal mode

IV. ELECTRON INERTIA BALLOONING MODE number (z) n=10 and (b) n=30, whendg=4x10"%, 7=0, and u/d;
=10"-

Resistive MHD is not a valid description of phenomena
on time scales shorter than the electron-ion collision time.
On such short time scales the plasma is collisionless, but n%t I : : .

) ; . This figure is a plot ofy, normalized tor,, as a function
ideal because the mass of the electrons is nonzero. We no

consider the stability of collisionless, high),q plasmas with §¥ 1832mfotrht$1r§ gm(;if?eri?mltﬂlfrg?(;ztl m;rllennuomsgrtdldg

7n=0, but retain the effect of the non-zero electron mass. 2_0 anéi 30. Qualitatively, the dependencejobn d": in é
In the generalized magnetic induction equati@ip the o ' Ve, P %0 e

electron mass appears through the electron skin depth collisionless plasma is similar to the dependence oh 7 is

The effect of the electron mass on stability is shown in Fig.i fgmr::)%neali,s rtﬁzlsfg\gegzsr?ﬁi'n;vrifg;Zégﬁ?acréz;:gs:

decreases when=10. In contrast, for then=20 and 30
modesvy initially increases asig decreases. Whedé is re-
duced to 410 *, the n=30 mode is the fastest growing
mode. For a given mode number y has a peak adé
=d3 (N, andd? .(n) decreases asincreases. The peak
Y growth rate is large; the growth time is only about 20.
The dominant effect of the electron mass comes from the
102 time derivative term proportional @2 on the left-hand side
of the induction equatiolb); the term proportional tdg on
the right-hand side of Eq5) affects the magnitude of by
less than 5%.

The mode structure of the unstable modes is shown in
Fig. 5. The real part of the pressure perturbation of rthe

10

10° L . e s =10 mode wheml2=4x10"* s plotted in Fig. 5a, while the
10 10 10° n= 30 pressure perturbation is shown in Fig. 5b. The pertur-
bation is positive in the lighter areas and negative in the
d;’ darker ones. In both cases, the perturbation is localized on

_ _ , the pressure gradient on the large major radzsl magnetic
FIG. 4. Electron inertia ballooning mode. The growth rates plotted as a ture sid f th neti is. but th turbation
function of the square of the collisionless electron skin deftfor toroidal Curvaturg side o e magneuc axis, bu e perturbatio

mode numben=10 (Cil’CleQ, 20 (Squareh and 30(triang|e$’ for a plasma becomesmore |OCB.|IZ€d aBIaneaSGS. Th'S |OCB.|IzatI0n |S
with =0, u/d2=1072, and Byo=1. characteristic of pressure driven ballooning modes.
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FIG. 8. 8 dependence. The growth rates plotted as a function g6, for

FIG. 6. Electron skin depth. The growth ragdor ann=30 mode is plotted ann=10 mode wherd§=10‘3, 7=0, and,u/dﬁ=10‘?

as a function of the square of the collisionless electron skin deptfor

constant viscosityt=4x10"° (open triangles and . proportional tod2

(solid triangleg, when =0 andBpq=1. ) . . .
not an abrupt increase inas B, rises from below the ideal
stability limit at 8,,=1 to above the ideal stability limit at

The decrease iny at larged? in Fig. 4 for then=30 Bpo=2. The growth rate decreases significantly &g, is

mode is caused by the stabilizing influence of the increasingeduced belows,,= 1, but the plasma is still unstable when

viscosity. AsdZ increases in Fig. 4y also increases so that Bpo= 0.4, the smallest value @, tested. Thus, an equilib-

the ratiou/d2 remains fixed at 10°. The dependence of  rium with 8 approximately three times smaller than the ideal

on d? at fixed u is shown in Fig. 6. The solid triangles are g limit is still linearly unstable because of the nonzero elec-

the results from Fig. 4 fon=30 whenu changes in propor- tron mass.

tion tod2, while the variation iny with fixed u=4x10"%is

given by the open triangles. Whenis fixed, the growth rate v, DISCUSSION

remains proportional to the magnitude of the electron skin

depth. The effect of the viscosity on the stability of an

=10 electron inertia ballooning mode at fixed2=4

X 10" 4 is shown in Fig. 7. Asu decreases, the growth rate

increases and would apparently continue to increagewfis

further reduced.

All of the results presented so far are for a toroida

plasma withB,,= 1, a little below the idegp limit. Figure 8

is a plot of the stability of equilibria with differeng,, to an

n=10 perturbation wheluig:lx 10 3. The perturbation is

unstable for a wide range ¢@f below the ideal limit. There is

The nonzero inertia of electrons has been shown to de-
stabilize ballooning modes in collisionless tokamak plasmas,
for values of3 below the ideal stability limit.

A comparison of Fig. 4 with Fig. 3 shows that the desta-
bilization of ballooning modes by the electron maslé)(in
Icollisionless plasmas is qualitatively similar to the resistive
destabilization byy in collisional plasmas. For the tokamak
parameters given in Table |, the magnitude of the Lundquist
numberS~7x10°. For the data in Fig. 3 witlB< Bigea, S
is more than four orders of magnitude smaller. There may
very well be a large reduction i asSis reduced by a factor
of more than 16, But more importantly, resistive MHD is
0.02 not a valid description of phenomena, such as the thermal
quench ing limit disruptions, that occur on time scales short
compared to an electron-ion collision time.

Even in collisionless plasmas, however, ballooning
modes are destabilized by the nonzero electron inertia. The
growth rate of collisionless electron inertia ballooning modes
is large; the peak growth rate in Fig. 4 is larger than
0.057,*. For the tokamak parameters listed in Table I, the
corresponding growth time is of the order of one microsec-
ond. For these same tokamak parameters, the square of the
electron skin deptld2~1x10"°, a little more than two or-

000 L L ders of magnitude smaller than the smallest valud2aiised
0.00 0.01 0.02 0.03 0.04 0.05 0.06 in the numerical results presented in Fig. 4. But eveniif
wd? Fig. 4 decreases by two orders of magnitude Wdéis two

¢ orders of magnitude smaller, the growth time would still be

FIG. 7. Viscosity. The growth rate is plotted as a function gi/d2 foran  Short, only about 10@s, comparable to the thermal quench
n=10 mode wherd2=4x10"%, =0, andBp,=1. time in B limit disruptions. Furthermore, the viscosity used

Y oot
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