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Collisionless nonideal ballooning modes
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The nonzero inertia of the electron is shown to destabilize pressure-driven ballooning modes in
collisionless tokamak plasmas that are stable in the ideal magnetohydrodynamic~MHD!
approximation. The effect of the electron mass is characterized by the collisionless electron skin
depthde5c/vpe , wherevpe5A4pne2/me is the electron plasma frequency. The growth rate of
electron inertia ballooning modes increases with the magnitude ofde , and also with the magnitude
of the ratio b of the plasma thermal pressure to the pressure in the confining magnetic field.
© 1999 American Institute of Physics.@S1070-664X~99!00501-7#
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I. INTRODUCTION

The most important limitation on the performance
large tokamaks is that imposed by disruptions. The fus
power output from a hot, magnetically confined plasma
creases as the square of the ion density, while the en
input required to contain the particles rises with the stren
of the confining magnetic field. Therefore, the ratiob of the
plasma thermal pressure to the magnetic field pressure
important figure of merit characterizing a tokamak’s perf
mance as a fusion reactor. Attempts to improve tokam
performance by increasingb are thwarted by disruptions
Tokamak discharges can operate stably only at values ob
below a critical limitbcrit .

1–3 Whenb exceeds this limiting
value, then there is a sudden, catastrophic loss
confinement.3

Most theoretical and computational analyses of tokam
stability at highb are based on the ideal magnetohydrod
namic ~MHD! equations. A representative sample of ide
MHD analyses of tokamak stability is given in Refs. 4–1
These analyses do indeed show that, in the ideal MHD
proximation, there is a linear stability limit inb. The plasma
is stable for values ofb smaller than someb ideal, where the
magnitude ofb ideal depends on the details of the toroid
plasma configuration, whereas the plasma is ideally unst
when b.b ideal. Experimental observations have verifie
that tokamak discharges cannot be operated stably at va
of b larger than the ideal limitb ideal. However, these obser
vations also show that tokamak plasmas can also be uns
to majorb disruptions whenb,b ideal, contrary to the pre-
dictions of ideal MHD.1,2 Typically, the experimentally de
termined limit inb, bcrit , is roughly one-half the limitb ideal

predicted by linear ideal MHD calculations. Furthermore,
values ofb,bcrit tokamaks experience minorb disruptions
that exhibit the same characteristics as majorb disruptions,
but are less violent so that the plasma can recover with
termination of the discharge.3

Since tokamak plasmas are observed to be unstab
values ofb,b ideal, nonideal effects in Ohm’s law may hav
an important impact on stability. The electrical resistance
the plasma, caused by binary Coulomb collisions of the c
rent carrying electrons with the ions, is known to destabil
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ballooning modes.11–14 Since this classical collisional trans
port of the current destabilizes ballooning modes, small sc
turbulence has been proposed as a destabilization mecha
through the generation of a turbulent current diffusion15

When b!b ideal, classical resistive ballooning modes wi
moderate toroidal mode numbern are either stable or only
weakly unstable with a small growth rate. But for larger
closer toßideal in magnitude, but still smaller, moderaten
resistive balloning modes grow much more rapidly. For
large tokamak with parameters given in Table I~major radius
R05260 cm, minor radiusa580 cm, toroidal magnetic field
Bf540 kG, central temperatureT510 keV, and plasma
density n5531013cm23), the electron-ion collision time
tei'400ms. Resistive MHD is valid for time scales muc
longer than the electron-ion collision time. However, t
thermal quench time inb limit disruptions is observed to be
from 100 to 400ms.3 Furthermore, just prior to the therma
quench rapidly growing moderaten fluctuations are often
seen, with a growth time that can be less than 50ms.3 Thus,
the growth time of the precursors tob limit disruptions and
the thermal quench time are less than an electron-ion c
sion time. As a consequence, collisions in the hot cen
plasma cannot play a role inb limit disruptions.

However, a collisionless plasma is not an ideal plasm
because the nonzero mass of the electrons is neglected i
ideal MHD approximation. Electron inertia has been fou
to play an important role both in collisionless magne
reconnection,16–18and in the generation of magnetic fields b
a collisionless dynamo.19 In this paper we investigate th
stability of collisionless, highb tokamak plasmas, retainin
the physics of the nonzero electron mass. We find that e
tron inertia destablizes ballooning modes with moderate
oidal mode numbern in tokamak plasmas that are stable
the ideal MHD approximation. Thus, even collisionless tok
mak plasmas below the idealb limit, b,b ideal, are unstable
because of the nonzero electron mass. The effect of the e
tron inertia is characterized by the collisionless electron s
depth de5c/vpe , where vpe5A4pne2/me. The growth
rateg of electron inertia ballooning modes increases with
magnitude ofde . The growth rate also becomes larger as
© 1999 American Institute of Physics
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toroidal mode numbern increases, as well as whenb in-
creases.

In Sec. II we extend the MHD equations to include t
nonzero mass of the electrons in Ohm’s law. We show t
the electron mass manifests itself in the induction equa
for the magnetic field through the collisionless electron s
depth. The highb equilibria used in our stability analysis ar
described in Sec. II. For the purpose of comparison, we
consider the ideal and resistive linear stability of these eq
libria in the MHD approximation, neglecting the electro
mass, in Sec. III. Then, in Sec. IV, the effect of electr
inertia on the stability of ballooning modes is studied. T
dependence of the growth rateg on the magnitude of the
electron skin depth is investigated. In addition, the functio
dependence ofg on b, the toroidal mode numbern, and the
viscosity is also presented. The potential impact of th
modes on the stability of highb tokamaks is discussed i
Sec. V.

II. EQUATIONS AND EQUILIBRIUM

The MHD equations are a set of coupled equations
the magnetic fieldB, mass velocityV, pressureP, and mass
densityrm . The time rate of change of the magnetic field
given by Faraday’s induction equation

]B

]t
52c“3E, ~1!

where the electric fieldE is determined by Ohm’s law
Ohm’s law, including the non-zero electron massme as well
as the resistivityh, is given by20

E1
V3B

c
5

me

ne2S ]J

]t
1“–~VJ1JV! D1hJ, ~2!

where the plasma currentJ is obtained from Ampere’s law

“3B54pJ/c. ~3!

Combining Eqs.~1!–~3!, we obtain the generalized inductio
equation including the nonzero electron mass,

]B

]t
5“3~V3B!1de

2S ]“2B

]t
2

4p

c
“3@“–~VJ1JV!# D

1
hc2

4p
“

2B, ~4!

wherede5c/vpe is the electron skin depth with the electro
plasma frequencyvpe5A4pne2/me. The nonzero electron
mass appears in Eq.~4! only through the electron skin dept
de . Suppose that the spatial variables, the magnetic fi
and the mass density are normalized as follows:L¹→¹,

TABLE I. Tokamak parameters.

R0 260 cm
a 80 cm
Bf 40 kG
T 10 keV
n 531013 cm23
at
n
n

st
i-

l

e

r

d,

B/B0→B, and rm /rm0→rm . In terms of these normaliza
tions L, B0 , andrm0 , we can define the Alfve´n speedVA

[(B0
2/4prm0)1/2 and the Alfvén time tA[L/VA . Then,

making the replacementst/tA→t, V/VA→V, P/(B0
2/4p)

→P, 4pLJ/B0c→J, and hc2tA/4pL2[tA /t r[S21→h
with the resistive timet r[4pL2/hc2 and the Lundquist
number~magnetic Reynolds number! S[t r /tA , the gener-
alized Ohm’s law~4! can be written in the following normal
ized form:

]~B2de
2
“

2B!/]t5“3~V3B!2de
2
“3@“•~VJ1JV!#

1h“2B. ~5!

In these normalized units, the MHD equations for the m
mentumU[rmV, pressure, and mass density are21

]U/]t1“•~VU!5J3B2“P1m¹2U, ~6!

]P/]t1“–~VP!50, ~7!

]rm /]t1“–U50, ~8!

wherem is the viscosity.
Consider toroidal geometry defined by coordina

(R,f,z), whereR is the distance from the major axis of th
torus,z is the vertical distance along the major axis, andf is
the toroidal angle. Suppose that the plasma is surrounde
a toroidal, ideal conducting wall with a rectangular cro
section in the poloidal plane, which is centered atR
5R0 ,z50) with a half-width given bya. At the conducting
wall boundary, the normal component of the magnetic fi
is zero (BR50 atR5R06a, Bz50 atz56a) and the flow
velocity is zero.

The normalized MHD equations~5!–~8! are solved in
this toroidal geometry on a Cartesian grid inR andz. Spatial
derivatives are evaluated to fourth order in the grid spac
D while time stepping is second order accurate in the ti
stepDt with a leapfrog trapezoidal scheme. The number
grid points used in theR2z plane is varied to ensure that th
numerical results are insensitive to this number.

Axisymmetric equilibria, independent of the toroid
anglef, are obtained dynamically21 by solving the normal-
ized MHD equations in two dimensions in the poloidal pla
to obtain force balance:J3B5“P. Equilibria are character-
ized by the magnitude of the peak central pressurePmax and
the total poloidal magnetic fluxDc. The quantityDc/(aR0)
is a measure of the average poloidal magnetic field. In te
of Pmax andDc, we define the ratiobpol of the plasma pres-
sure to the poloidal magnetic field pressure as

bpol5Pmax/~Dc/aR0!2. ~9!

An example of an equilibrium withbpol51 is shown in Fig.
1. This figure is a plot of the pressureP ~solid line! and the
safety factorq ~dashed line! profiles as a function ofR
through the mid-planez50, for a torus with major radius
R053, minor half-width a51, and inverse aspect ratioe
[a/R05 1

3. The central safety factorq051.1 at the magnetic
axis, andq increases monotonically from the magnetic ax
to the wall, which is a magnetic separatrix. Over the range
R where the pressure gradient is nonzero, the magnetic s
is significant because theq profile is changing significantly.
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The normalized pressure is equal to1
2b tor , whereb tor is the

ratio of the peak plasma pressure to the pressure in the
oidal magnetic field. For the equilibrium shown in Fig.
b tor51.3%. Equilibria with different values ofbpol are ob-
tained by changing the peak pressurePmax.

Equations describing the stability of these equilibria
three-dimensional perturbations are obtained by lineariz
Eqs.~5!–~8! about an equilibrium with a given pressure pr
file and current profile. All perturbed quantities are taken
vary in toroidal angle ase2 inf, wheren is the toroidal mode
number. For an arbitrary initial perturbation with mode nu
ber n, the linearized equations describing the perturbat
are evolved in time. In the long-time asymptotic limit a no
mal mode forms in which the perturbation amplitude var
exponentially in time,egt, whereg is the growth rate of the
mode. Although both the equilibrium pressure and curr
are retained in the analysis, the gradient in the equilibri
pressure is the dominant source of instability.

III. IDEAL AND RESISTIVE BALLOONING MODES

For the purpose of comparison, let us first consider
ideal and resistive stability of highbpol toroidal plasmas,
neglecting the electron mass. Figure 2 is a plot of the gro
rateg, normalized to the Alfve´n timetA , of ann510 mode
as a function of the Lundquist numberS51/h whende

250
and m5h, for five equilibria with differentbpol . From the
bottom of the figure, the curves are for equilibria wi
bpol51, 2, 3, 4, and 5. The actual data points are given by
solid circles in Fig. 2; the data points are connected
straight lines for ease of visualization. The points labelled
S5` are forh5m50. Whenbpol55, the growth rate of the
n510 mode is nearly independent ofS and the mode is
unstable in the ideal MHD approximation. The growth rate
quite large; the growth time is just a little more than 10tA .
For the tokamak parameters given in the Table I,tA

FIG. 1. Equilibrium. The pressureP ~solid line! and the safety factorq
~dashed line! are plotted versus the major radial coordinateR in the mid-
plane (z50), for an equilibrium withbpol51.
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'0.1ms. Thus, the growth time is only about 1ms. Asbpol

decreases, the magnitude ofg decreases and becomes i
creasingly dependent on the magnitude ofh. Whenbpol is
reduced to 4, the mode is still unstable in the ideal MH
approximation. The lack of points atS5` in Fig. 2 when
bpol,4 does not necessarily mean that the mode is stabl
the ideal MHD limit. The dissipation in the equations dam
grid scale noise in the simulations. Whenbpol is reduced to
3, there is growing noise at the grid scale in theh5m50
simulation, although a coherent mode structure still gro
several orders of magnitude along with the grid scale no
In addition to our full two-dimensional linear MHD code, w
have also tested stability with a code that utilizes the b
looning approximation to solve the one-dimensional line
ballooning mode equation,14 using the average pressure gr
dient over the region from 0.1Pmax to 0.9Pmax on the largeR
side of the magnetic axis in Fig. 1 where the tw
dimensional structure of the modes is localized. The res
from this code demonstrate that thebpol53 equilibrium is
indeed ideally unstable, as is thebpol52 equilibrium, but the
bpol51 equilibrium is not. Thus, the ideal stability limit
bpol,ideal, lies in the range 1,bpol,ideal,2. As bpol is reduced
below the ideal limit,g becomes increasingly dependent
the magnitude ofS.

The dependence of the growth rate on the toroidal m
number is shown in Fig. 3. This figure is a plot ofg, nor-
malized totA , as a function ofh[S21 with m5h in the
bpol51 equilibrium, for three different mode number
n510, 20, and 30. Whenh51024, the n510 mode is the
fastest growing mode. But the growth rate of then510
mode decreases ash decreases. In contrast, the growth ra
of the n520 and 30 modes initially increase ash decreases
below 1024. When h is reduced to 531026, the n530
mode is the fastest growing of the three modes. For a gi
mode numbern, the growth rateg has a peak ath
5hmax(n), and the resistivity at the point of maximum
growthhmax(n) decreases asn increases. As we will show in
the next section, the stabilizing influence of the viscosity
the cause of the decrease ing for h.hmax(n). In the largen
one-dimensional ballooning mode equation,h andn appear

FIG. 2. Lundquist number. The growth rateg is plotted as a function of the
Lundquist numberS for equilibria with bpol51,2,3,4,5. The points labeled
by S5` are obtained from the ideal MHD equations.
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only in the producthn2 and, therefore,g is a function of
hn2.13 Similarly, the results of our two-dimensional simul
tions in Fig. 3 show that the peak ing shifts to smallerh as
n increases, and that the magnitude of the peak growth ra
nearly the same.

IV. ELECTRON INERTIA BALLOONING MODE

Resistive MHD is not a valid description of phenome
on time scales shorter than the electron-ion collision tim
On such short time scales the plasma is collisionless, but
ideal because the mass of the electrons is nonzero. We
consider the stability of collisionless, highbpol plasmas with
h50, but retain the effect of the non-zero electron mass

In the generalized magnetic induction equation~5!, the
electron mass appears through the electron skin depthde .
The effect of the electron mass on stability is shown in F

FIG. 3. Resistive ballooning mode. The growth rateg is plotted as a func-
tion of the resistivity h for toroidal mode numbern510 ~circles!, 20
~squares!, and 30~triangles!, for a plasma withm5h andbpol51.

FIG. 4. Electron inertia ballooning mode. The growth rateg is plotted as a
function of the square of the collisionless electron skin depthde for toroidal
mode numbern510 ~circles!, 20 ~squares!, and 30~triangles!, for a plasma
with h50, m/de

251022, andbpol51.
is

.
ot
ow

.

4. This figure is a plot ofg, normalized totA , as a function
of de

2 in the bpol51 equilibrium with h50 and m/de
2

51022, for three different toroidal mode numbers,n5 10,
20, and 30. Qualitatively, the dependence ofg on de

2 in a
collisionless plasma is similar to the dependence ofg on h is
a collisional, resistive plasma. Whende

25231023, the n
510 mode is the fastest growing mode. Asde

2 decreases,g
decreases whenn510. In contrast, for then520 and 30
modesg initially increases asde

2 decreases. Whende
2 is re-

duced to 431024, the n530 mode is the fastest growin
mode. For a given mode numbern, g has a peak atde

2

5de,max
2 (n), andde,max

2 (n) decreases asn increases. The pea
growth rate is large; the growth time is only about 20tA .
The dominant effect of the electron mass comes from
time derivative term proportional tode

2 on the left-hand side
of the induction equation~5!; the term proportional tode

2 on
the right-hand side of Eq.~5! affects the magnitude ofg by
less than 5%.

The mode structure of the unstable modes is shown
Fig. 5. The real part of the pressure perturbation of then
510 mode whende

25431024 is plotted in Fig. 5a, while the
n530 pressure perturbation is shown in Fig. 5b. The per
bation is positive in the lighter areas and negative in
darker ones. In both cases, the perturbation is localized
the pressure gradient on the large major radius~bad magnetic
curvature! side of the magnetic axis, but the perturbati
becomes more localized asn increases. This localization i
characteristic of pressure driven ballooning modes.

FIG. 5. Mode structure. The real part of the pressure perturbation
bpol51 equilibrium is plotted in the poloidal plane (R,z) for toroidal mode
number ~a! n510 and ~b! n530, whende

25431024, h50, and m/de
2

51022.
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The decrease ing at largede
2 in Fig. 4 for then530

mode is caused by the stabilizing influence of the increas
viscosity. Asde

2 increases in Fig. 4,m also increases so tha
the ratiom/de

2 remains fixed at 1022. The dependence ofg
on de

2 at fixedm is shown in Fig. 6. The solid triangles ar
the results from Fig. 4 forn530 whenm changes in propor-
tion tode

2 , while the variation ing with fixedm5431026 is
given by the open triangles. Whenm is fixed, the growth rate
remains proportional to the magnitude of the electron s
depth. The effect of the viscosity on the stability of ann
510 electron inertia ballooning mode at fixedde

254
31024 is shown in Fig. 7. Asm decreases, the growth ra
increases and would apparently continue to increase ifm was
further reduced.

All of the results presented so far are for a toroid
plasma withbpol51, a little below the idealb limit. Figure 8
is a plot of the stability of equilibria with differentbpol to an
n510 perturbation whende

25131023. The perturbation is
unstable for a wide range ofb below the ideal limit. There is

FIG. 6. Electron skin depth. The growth rateg for ann530 mode is plotted
as a function of the square of the collisionless electron skin depthde for
constant viscositym5431026 ~open triangles!, andm proportional tode

2

~solid triangles!, whenh50 andbpol51.

FIG. 7. Viscosity. The growth rateg is plotted as a function ofm/de
2 for an

n510 mode whende
25431024, h50, andbpol51.
g

n

l

not an abrupt increase ing asbpol rises from below the idea
stability limit at bpol51 to above the ideal stability limit a
bpol52. The growth rate decreases significantly asbpol is
reduced belowbpol51, but the plasma is still unstable whe
bpol50.4, the smallest value ofbpol tested. Thus, an equilib
rium with b approximately three times smaller than the ide
b limit is still linearly unstable because of the nonzero ele
tron mass.

V. DISCUSSION

The nonzero inertia of electrons has been shown to
stabilize ballooning modes in collisionless tokamak plasm
for values ofb below the ideal stability limit.

A comparison of Fig. 4 with Fig. 3 shows that the des
bilization of ballooning modes by the electron mass (de

2) in
collisionless plasmas is qualitatively similar to the resist
destabilization byh in collisional plasmas. For the tokama
parameters given in Table I, the magnitude of the Lundqu
numberS;73109. For the data in Fig. 3 withb,b ideal, S
is more than four orders of magnitude smaller. There m
very well be a large reduction ing asS is reduced by a factor
of more than 104. But more importantly, resistive MHD is
not a valid description of phenomena, such as the ther
quench inb limit disruptions, that occur on time scales sho
compared to an electron-ion collision time.

Even in collisionless plasmas, however, ballooni
modes are destabilized by the nonzero electron inertia.
growth rate of collisionless electron inertia ballooning mod
is large; the peak growth rate in Fig. 4 is larger th
0.05tA

21 . For the tokamak parameters listed in Table I, t
corresponding growth time is of the order of one micros
ond. For these same tokamak parameters, the square o
electron skin depthde

2'131026, a little more than two or-
ders of magnitude smaller than the smallest value ofde

2 used
in the numerical results presented in Fig. 4. But even ifg in
Fig. 4 decreases by two orders of magnitude whende

2 is two
orders of magnitude smaller, the growth time would still
short, only about 100ms, comparable to the thermal quenc
time in b limit disruptions. Furthermore, the viscosity use

FIG. 8. b dependence. The growth rateg is plotted as a function ofbpol for
an n510 mode whende

251023, h50, andm/de
251022.
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in Fig. 4 is a stabilizing factor. The viscosity is nonzero
the results presented in Fig. 4 because this dissipatio
necessary to damp grid scale noise in the simulations. Fo
tokamak parameters in Table I, the normalized collisio
viscosity m5r i

2/t i i ;2310211, wherer i is the ion gyrora-
dius and t i i is the ion-ion collision time, and the rati
m/de

2;231025, nearly three orders of magnitude small
than the ratiom/de

251022 used in Fig. 4. The results in Fig
7 demonstrate thatg increases significantly asm/de

2 is re-
duced in magnitude. Moreover, the ion-ion collision time
longer than the electron-ion collision time byAMi /me; t i i

;20ms for the tokamak parameters in Table I. Thus, ther
not any collisional transport of momentum~viscosity! per-
pendicular to the magnetic field lines because these elec
inertia ballooning modes grow on time scales shorter t
t i i .

The growth rate of the collisionless electron inertia b
looning mode decreases asbpol is reduced below unity in
Fig. 8. It may be that the mode becomes stable due to
influence of plasma compressibility whenb is far enough
below the ideal stability limitb ideal, as is the case for resis
tive ballooning modes.13 Nonetheless, the results in Fig.
demonstrate that electron inertia ballooning modes are
early unstable ifb is not too much smaller thanb ideal. The
ultimate impact of these modes on confinement is de
mined by their nonlinear evolution and possible nonline
saturation mechanisms.
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