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Electron magnetohydrodynamic turbulence
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Electron magnetohydrodynam{EMHD) turbulence is studied in two- and three-dimensiai2&

and 3D systems. Results in 2D are particularly noteworthy. Energy dissipation rates are found to be
independent of the diffusion coefficients. The energy spectrum follows>a law for kde>1 and

k=" for kd,< 1, which is consistent with a local spectral energy transfer independent of the linear
wave properties, contrary to magnetohydrodynathi¢diD) turbulence, where the Alfve effect
dominates the transfer dynamics. In 3D spectral properties are similar to those in 2DO9®
American Institute of Physic§S1070-664X99)00103-3

I. INTRODUCTION 1 c
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In many weakly collisional high8 plasmas, spatial 4men

scales smaller than the ion inertial length and time scalefjote that the pressure contribution vanishes on the usual
shorter than the ion cyclotron period can be excited. To acassumptiorp,= pe(n). Equation(2) is called electron mag-
count for such phenomena we have to abandon the magngetohydrodynamic$EMHD), which has attracted consider-
tohydrodynamioMHD) approximation and resort to a two- apje attention in recent years. On the one hand, there are the
fluid description, where in addition to the ion equation of gpplications to plasma opening switches @nginches, see,

motion we consider the generalized Ohm’s law e.g., Ref. 1. Here the mean density gradient plays a crucial
1 1 Me role through the termvV(1/n) X (jxB) in Eqg. (2). On the
E=- Evex B— a\Vpe— g(atnve+V~veven) other hand, special interest in EMHD arises in the field of

quasicollisionless magnetic reconnectfoRwhich is gener-

_ Me_, ally believed to be responsible for the fast magnetic energy
/b Ve?V Ve .Y release in many laboratory and space plasmas, in particular

o o _ in the geomagnetic tail. In this context the mean density
Here it is assumed that collisions are still frequent enough Qradient is less important. We therefore assume homoge-
make the pressure isotropic, and the divergence of the stregous density, which is consistent with the quasineutrality

tensor is replaced by a scalar viscous diffusion term. Th%onditionV-j:O.
latter assumption is a very coarse approximation because of | inearizing(2) about a static equilibrium embedded in a

the strong difference between parallel the magnetic field homogeneous field gives (neglecting dissipation
and perpendicular viscosity in a plasma. Hetgis essen-

tially the perpendicular electron viscosity, but the details of c? cB B
the viscous behavior are not important in the present context, ¢ 1+ w2 Byt 47-renk”| kX B, =0, )
pe

where the viscosity serves primarily as an energy sink. If we
focus on the small-scale dynamicsc/w,;, the ions can be  which yields the dispersion relation for the whistler,
considered as a motionless neutralizing background, such

. ) ) 4 2,2
that the electron flow determines the electric current. On in- 2= c 2 kik ®)
sertion ofE into Faraday’s law we obtain a self-consistent wge 1+ k202/wge)2’

nonlinear equation for the magnetic field, which can be writ-

ten in the form Q.=eB/ms. The whistler is a transverse circularly polar-

ized wave, which rotates about the magnetic field in the

( ¢, ) ¢, ) sense of the electron cyclotron motion,
| B— _ZV B|—VX]|veX B__ZV B
@pe Wpe B;=*i(k/k)XB;. (6)
nc? ) c? S It is convenient to cast the EMHD equation into dimen-
=47V Bmre—5 VVB, (20 sionless form using the whistler time scaley
Ppe =L%(wpe/c)?I€, atypical field intensityd,, and a typical
where spatial scale length,
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0(1—d2VH)B=VX[veX (1—-d2V?)B]=7,(—V?)"B, (7) VxA=B, which ford.—0 reduces to the magnetic helicity

, , H and ford.—> to the (electron kinetic energyH". Ex-
wherede=c/(wpcl). We have also introduced generalized yagsion(14) also contains terms [j-Bd3x reminiscent of
diffusion terms withy=1 corresponding to resistivity and o cross-helicityk = fv-B in MHD.

v=2 to (perpendicular electron viscosity. In numerical In 2D the ideal equations conserve the following quan-
studies of turbulence one often uses higher-order diffusioqnities, the energy
v>2 in order to separate nondissipative and dissipative
scales more clearly.

Reconnection processes are often considered in two-
dimensional2D) approximation. Assuming,= 0, the mag-
netic field and current density can be written in the form

B=e,XVy+e,(B,oth), ) sz (b—d2V20)f' (y—d?j)d?x, (16)
j=Vbxe,+e V=V, (9)

E:%f {(Vi)2+b?+d2[j?+ (Vb)?]}d%x, (15

the generalized helicity

and a quantity containing only the electron canonical mo-
which indicates that the axial field fluctuatidnacts as a mentump=¢— dgj,

stream function of the poloidal electron flow. The two-

dimensional version of the EMHD equatidi) consists of G:J g(y—d2j)d?x, 17

two equations fory andb:

2. 2.\ N wheref and g are arbitrary functions. Since in turbulence
A= de]) Ve V(= de]) = m.(= V'Y, (10 theory the quadratic invariants are most important, the appro-
&t(b—dﬁw)+ve~V(b—dﬁw)+B-Vj =,(—V2)"b, (12) priate choic;e isf (x) = g(x) =x2. Ex_pressions@S)—_(l?) are

generalizations of the corresponding quantities in 2D MHD.

j=V%y, w=V2. As in MHD one expects a direct cascade of the energy and
inverse cascades of the helickyin 3D and the mean square
: s, momentumG in 2D. Here we are mainly concerned with
consequence of the mcompress_lblhty of the electro'n ﬂQW' rocesses associated with the direct energy cascade, leaving
One should however, keep in mind that a strong axial fielqne jnyestigation of inverse cascades in EMHD to a future
will couple the ions to the electrons al_so on scated; and study. Though we find that EMHD and MHD turbulence
hence invalidate the EMHD approximation. Hen&,  ghare many properties, which is primarily due to the direct

should not be too large, i.e., we are dealing mainly withcaqcade of the energy, there are, however, also distinct dif-
high-8 plasmasB~1.] In 2D linear whistler modes imply a ferences.

coupling of poloidal and axial field perturbations,

[The mean axial fieldB,, does not appear ifL1), which is a

b=k, (12)
which is the 2D analog of6). Il. 2D EMHD TURBULENCE
Equations(10), (11) are formally similar to the equations Two-dimensional turbulence has previously been con-

of 2D MHD, but are more complicated than the latter be-gjgered in various different systems, notably hydrodynamics
cause of the intrinsic scalk,. Hence one has in general to (see e.g., Refs. 67MHD (e.g., Ref. 8 or Hasegawa-Mima
distinguish between the long-wavelength regitig<1 and g4y ation (e.g., Refs. 9, 10 These studies are motivated
the short-wavelength regirmied,>1. Note that EMHD does a1y by special applications, where the dynamics of the
not reduce to MHD in the limide—0. Actually EMHD is g stem is quenched in one direction, for instance by a strong
only valid on scales<<d; = ym; /m¢de, while MHD refersto magnetic, but partly also because these systems reveal inter-
macroscopic scales>d; . esting turbulence properties, which are numerically more

easily accessible than in fully 3D systems. Also in EMHD

first studies that have appeared recently, are concerned with
Il. IDEAL INVARIANTS 2D turbulencé®*?In this section we therefore focus on 2D

EMHD turbulence, which exhibits a number of interesting

In turbulence theory the ideal invariants of the dynami-and unexpected properties, before we discuss the 3D case in

cal equations play an important role. It can easily be checkegec. Ill, which turns out to be rather similar to the 2D be-
that neglecting dissipation the EMHD equati@h conserves havior.

the energy In addition the numerical simulations discussed in this
1 paper refer only to decaying turbulence. This has the advan-

E= _f (Bz+d§j 2)d3x (13 tage, that in a self-similarly decaying state, which has be-

2 come independent of the initial conditions, we are dealing

and the generalized helicity only with the intrinsic properties of the turbulence, contrary

to forced turbulence, which may reflect particular features of
the forcing. On the other hand studies of decaying turbulence

— 42\ . (R_2v2 3
F_f (A=del)- (B=deVB)d), (14 may be affected by the lack of stationarity. For instance the
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spectral energy flux is not strictly constant in the inertialwhich eliminates the small terf@-Vj and thus reduced 1)
range, though the variation is small for a sufficiently broadessentially to the Euler equation. At later times the dynamics
extent of this spectral range. is, however, different in both cases. While the Kelvin-
A. Turbulence generation He_ImhoItz instability of the_ Euler s_ystem only leads to a set
of isolated weakly interacting vortices well-known from 2D
At small values of the dissipation coefficients an EMHD hydrodynamic turbulence, Fig. 2, the EMHD system remains
system, starting from smooth initial conditions, tends to genin a strongly turbulent state consisting of vortices and mi-
erate sheet-like structures, which subsequently break up leagrofilaments, Fig. 1c. The latter are constantly regenerated by
ing to fully developed turbulence. In resistive MHD current the small termB-Vj, which then break up again into vorti-
sheets of thickness~ 7' are generated, which are rather ces, thus maintaining the turbulent dynamics. Figure 1d il-
stable subject only to tearing instability at high sheet aspeqystrates the canonical momentymat t=4, which exhibits

ratio A/5~10,° where A is the sheet length. The plasma the characteristic features of a purely convected quarity,
flow v along the sheet is stable owing to the parallel mag-= ;— d2j~ —d?j, sincey is a smooth function.

netic field generated by the current, which is strong enough
va>v to suppress the Kelvin-Helmholtz modfe(Originally
the term Kelvin-Helmholtz mode refers to the instability of a L

. . . .~ B. Turbulent energy dissipation
vortex sheet, i.e., the interface between two regions moving
at different velocities. Here we consider the bending insta- The small-scale turbulent eddies give rise to efficient
bility of a fluid jet, i.e., a vortex double laygrin an EMHD  energy dissipation
current sheet conditions are quite different. Here conserva- dE
tion of the canonical momentum= y—d2j, Eq. (10), re- — == 7]3j d?X[(V?))%+(Vw)?]=—e. (20)
quires that the magnitude of the axial current dengiig dt
limited, j~¢/d§, even in much narrower structurés<d,, The energy dissipation rate increases from the very low
such that the poloidal field generated by this current is wealkevel in the smooth initial state to a maximum, where turbu-
B~ ¢6/d2. The poloidal electron flow or current density is lence is fully developed, and subsequently decays in a self-
of the order of the axial on&b~Db/d~j, reflecting the similar way. An important result is, tha(t) is independent
whistler property(12). The parallel field is too weak by a of the value of the dissipation coefficient, as shown in Fig. 3,
factor 6/d, to stabilize the(electron Kelvin-Helmholtz ~ where the time evolution of is plotted for different values
mode, which is hence expected to grow for sheets thinneof #;. Here we start from “random” initial conditions
thand,, where theB- Vj term in(11) becomes small, reduc- calledB-type in Ref. 8,
ing (11 to the Euler equation for the electron flow. The

— _ L2 2 :
Kelvin-Helmholtz instability of an EMHD vortex sheet in Y= expl —kf2ko 2 i ev), @D
the absence of a poloidal magnetic field, where @4) re- b= exp( — k%/2k3+ 27 By), (22)
duces to the Hasegawa-Mima equation, has recently been s 2 o
studied by Bulanowet al 1415 where k=K +ky, Key=*1,%2,..., ay,Bx are random

The process of turbulence generation is illustrated irPhases, and the dominant initial wave numbekgis 5. Fig-
Figs. 1a—d. Equationd0) and(11) are solved on a quadratic Ure 3a refersﬁgo relatively Iarge%gz 0.3. Shown are three
box of edge sizd =2 with periodic boundary conditions €ases;73=10"" (dashed ling 10 (dasghed—dotted and a
using a standard pseudospectral method Withmodes or cafelzostarting Wlth 1%, SWItCh_Ing to 1Q gttfo.s anq to
collocation points and dealiazing according to the 2/3 rule10 — att=1 (solid). On reducing the dissipation coefficient
hence only (2/3N2 modes are actually advanced. The dis-the system _responds by exciting smaller spa_tial scales, so
sipation terms are integrated exactly. In Fig. 1 we have chothat the dissipation rate soon reaches the previous level after

sen the smooth initial state a weak overshoot. Figure 3b gives similar plots for a smaller
value d.=0.033. Here the dashed curve correspondg4o
Y(X,y)=cog2x+2.3)+cogy+4.1), (18 =108, while in the solid linez, is switched to 10° at t
=0.5 and to 101% att=1. At t=1.4y; is switched down
b(x,y)=cogx+1.4)+cogy+0.5), (19 further to 10 ! (dashed-dotted This behavior of the energy

which has been introduced in Ref. 8 as configuration d'ss_'ﬁ?“on rate és sim|I?r n ZtD ngD Lurbulenéed.
generalizing the Orszag-Tang vortex, and we dse 1, v e energy dissipation rate does, however, depert.on

=3, 73=10 8 andN =1024. (Results are similar for=2, as is obvious by comparing Figs. 3a and 3b. We fé(t)

whereasy=1 corresponding to a pure friction term at high =~ (1/de)Eo(t/de), i.e., E(t) =Eq(t/d,). This behavior can

is in general found to be insufficient to prevent the formationP® seen from Eqs10), (11). Since the temB-Vj in (11) is.

of singularities) At time t=2.0 extended thin sheets have reésponsible for the energy transfer giving rise to the direct

been formed illustrated most clearly in a plot of the “vortic- €Nergy cascade as discussed above, we have approximately
ity” w=V?b, Fig. 1a. Subsequently these sheets are dis- d K

rupted by the onset of instability, Figs. 1b, 1c. In the first d(Td)j

phase the dynamics of this instability is identical to the €
Kelvin-Helmholtz mode of a fluid jet® as becomes clear Figure 3b also suggests thB(t) decays as a power law,
when rerunning the simulation witly=0 set att=2.0, roughlyE~t~1, which is similar to the energy decay law in

k
Ekdkz—def [B-Vj].dk.
0 0
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FIG. 1. Generation of small-scale turbulence by the Kelvin-Helmholtz instability. Plotg(efy) att=2.0 (a); t=2.4 (b); t=4 (0). p(x,y)=y¥—d?j att
=4,

2D MHD turbulencé® We can, however, not exclude a de- C. Energy spectrum

pendence on the initial conditions as discussed in Ref. 16. A characteristic statistical quantity of a turbulent system
The self-similarity of the decaying turbulence also. 9 y y

shows up in the constancy of the ratio of certain macroscopi&S the energy spectrum, which for isotropic turbulence is con-

quantities. Figure 4 displays the time development of the/eniently considgred in the ar\gle-integrated _f‘?”"
raios of the axial and poloidal kinetic energieg; Ex./Exdk=E. While 3D hydrodynamic turbulence exhibits

:<j§>/<j§>, wherejf,z(Vb)z, and of the corresponding the spectrunE, <k %3 the famous Kolmogorov law, entro-
field energiesRg=((V#)?)/(b?). The simulations give the phy conservation in 2D enforces an inverse energy cascade
valuesR;=1.5 andRg=3, independently ofl,. These re- which leads to a much steeper spectrligrk™*, u>3. In

sults reflect the linear whistler propert¥2), which remains MHD turbulence energy transfer is different because of the
qualitatively valid also in the nonlinear regime. Alfvén effect!”!® The magnetic field in the large energy-
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FIG. 4. Time evolution of the ratios of kinetic and magnetic energies for
FIG. 2. w(x,y) att=5 from the simulation shown in Fig. 1, but witi two runs with(a) d.=0.3 and(b) d,=0.01.
=0 set att=4.

containing eddies acts as a guide field on small-scale flucilfven effect in MHD. However, contrary to Alfwewaves,
tuations, which behave as Alfaewaves propagating along the whistler is dispersive with high group velocity><k for

the large-scale field. Since only oppositely propagating wav&Jde<1 and small group velocity ;=0 for kd,>1 as seen
packets interact, the interaction time is the Alivéme r,  from the dispersion relatio(b). Because of these properties

=I/vs, which is much shorter than the hydrodynamic EMHD cannot be written in terms of the whistler variables
scrambling timer,=1/v,, wherev, is the velocity fluctua- Pk K¢y as can be done in MHD by introducing the El-

tion amplitude at scale. Hence the spectral energy transfer S2esser variables= B. Hence it is an interesting question,

rate is reduced, which should lead to a flatter energy spec¥hether in EMHD whistler propagation produces a similar
trum, E k=2 This so-called Iroshnikov-Kraichnan spec- correction to the energy spectrum as does the Alfetfect

trum is indeed found in 2D numerical simulatior®bser- N MHD. o )
vations of MHD turbulence in the solar wind give a more ~ We have to distinguish between the different ranges
complex picture. kd.>1 andkd.<1. In the former range numerical simula-

In EMHD turbulence the linear perturbations are whis-tions reveal an almost exact Kolmogorov spectrum as shown
tlers propagating along the large-scale magnetic field, whicH Fig. 5a. Evaluating different turbulent states we obtain
could give rise to a “whistler effect” analogous to the

g 9 E,=Ce2% 5 for kd>1, 23

» whereC=1.8=0.1. Since in this range time scales associ-
L L 1 ated with the whistler interaction become longer than the
IS nonlinear eddy scrambling time, the Kolmogorov energy
transfer process should dominate leading to the spectrum
(23). It is worth noting that this spectral law is found to be
valid over the entire rangkd.,>1 and not only asymptoti-
cally for kd.>1. We will come back to this point below.

In the opposite caskd.<1 the character of the turbu-
lence is different, structures resembling those in MHD with
current sheets mainly aligned along the magnetic field. Since
1074} ! ] j small-scale structures are less pronounced, a steeper energy
i - spectrum can be expected. This is indeed observed, Fig. 5b:

107"

1078}

1072

1075 Lot td 1078 e Exxk #,  p=225+0.1 for kde<1. (24)
1 2 3 4 Q 05 1.0 1.5t 2.0

0
@ t (b) Let us compare this finding with theoretical predictions. Ne-

FIG. 3. Energy dissipation rate= —dE/dt from simulations with(a) d, gle_Cting linear mode propagation effects, i.e., a possible
=0.3; (b) d.=0.033, for various values of the dissipation coefficiegt whistler effect, we apply a Kolmogorov-type argument. The
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< I FIG. 6. Compensated energy spectrit®E, from two runs withd,
1 1 = =0.02. (a) for 3=10"° the spectrum remains within the > regime;(b)
E ' 3 for 7;=10"** the largek part extends into thk~5? regime with the cross-
N ' ] over occurring akd,=0.5.
L : .
1
107" 5 ! E
= ! 3 process, though they are sufficient to establish equipartition
! ] of poloidal and axial field energiek?|y|?=|by|? in this
kde =1 : b range.
102 N NN Y Y Y 1 W B W T It is interesting to note that the transition between the
(b) 1 10 10% 103 two spectral ranges is rather sharp, as demonstrated in Fig. 6.
k

Here the energy spectrum for a case vd¥ 0.02 is plotted

FIG. 5. Compensated plots of the energy spectriankS%E, for d,=0.3;  for two values of#nz. While for the higher dissipationy;

(b) K7€, for d,=0.01. =10"° the spectrum remains within tHe” ”’® regime, for
lower dissipationy;=10" ! it extends into thé™ >3 regime,
where the rather abrupt crossover occur&@éi=0.5. This
behavior is caused by the Kelvin-Helmholtz instability,
which sets in, when the dissipation scale becomes smaller
l:['hande. Figure 7 illustrates the turbulence in such a system.
The large- and medium-scale structures represent the dynam-

interaction time for eddies of scaleis n=I/v,~1%/b.
Hence the energy transfer rate, which is constant in the ine
tial range, becomes

e~E /7~b3/1?, ics when electron inertia can be ignored, while at the small
_ > s scales the effect of the Kelvin-Helmholtz instability is
Eyc= K22+ [y 2~ [y 2~ 1P~ 2375, (25

usingk~1~1. By contrast, if the whistler effect would domi- V. 3D EMHD TURBULENCE
nat; lthe dynsmms N a way fthe AIfngeffect (ioes In MH?( The 2D approximation considered in the previous sec-
turbu ence,ft N engrglay transl_er consisting IS many Y(\j/es ®on is only justified, if the axial fieldB,q is large enough to
goungeys %. opposmfaly traveling wave Eai ets vgou e re'suppress Kelvin-Helmholtz instability by the currgpnin the

uced leading to a flatter spectrum, which can be est'm""teﬁiﬂrd direction. In the absence of a mean field the turbulence

by the following argument. The whistler interaction time is becomes genuinely three-dimensional. Such behavior has re-

- —12/( 42 ; ot B
w I_/vg(l) |2 /(defde). During this time the change of €N~ cently been studied in 3D simulations of magnetic reconnec-
ergy is 6, ~bj7y/7 . Because of the random nature of this i i the framework of EMHD? It has been found that

process the energy transfer time is rather long, Kelvin-Helmholtz instability is excited more readily mdi-

e~ (E 1 0E)) 27~ 72l myy~ d2Q | 2/1b7 . rgction _ than in the poloidgl plane leading to a three.—

) _ dimensional turbulent behavior. Though the reconnection is
From e~bj’/ 7 we thus obtain not faster than in the laminar case, since already in the latter
E e~ (ed2Q0) V%2, (26) the reconnection rate is fast, independent of the electron in-

ertia depending only on the large-scale configuration, the en-
The simulation result clearly favors the ”® law, which  ergy dissipatior(=electron heating which is very weak in
indicates that even fokd.<1, where wave propagation ef- the laminar state, becomes large and independent of the mi-
fects are strong, they do not dominate the spectral transferophysics.
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FIG. 7. Plot ofw(x,y) for de=0.02, ;=10 illustrating the coexistence
of bothkd,<1 andkd,>1 turbulent structures.

Here we consider the case of 3D homogeneous turbu-
lence analogous to the 2D studies presented in Sec. Il. Equa
tion (7) is solved on a cubical box with periodic boundary ()
conditions using a similar numerical scheme as in the 2D
simulations. Again we first consider the inertia-dominatedFIG. 8. Energy spectrum of 3D EMHD turbulend@) d.=1. The straight
regime kde> 1. Here (7) reduces to the 3D Navier-Stokes line indicates the Kolmogorov spectrukt %3, the insert gives t_he chal

. . . - spectral exponenf(k)=—dInE/dInk. (b) de=0.02. The straight line
equation for the electron flow written in the vorticity form, indicates the spectrufa™
VX v,=V?B. Contrary to the 2D case, where the snBVj
term had a strong influence on the dynamics generating a

direct energy cascade instead of the inverse one in the 2Rhich is nonlocal contrary to the 3D behavior, and may
Navier-Stokes turbulence, the small terms, l.e., those nqﬁence blur the Spectra| law at h|gh Reynolds numbers_
multiplied by d2 have little effect in this range. Hence the In the long-wavelength regimied,<1 EMHD is differs
turbulence has the characteristics of 3D Navier-Stokes turbugistinctly from the Navier-Stokes theory, and it is interesting
Ience, Spatial structures are found to be very similar. Also thQO see, whether the 2D Spectra] behav-i\okfl?’ persists in

energy spectrum is expected to follow the Kolmogorov law3p. Figure 8b gives the energy spectrum from a simulation
(23). Because of the short wave number range available ifyn with d,=0.02, »=3 and againN3= 256", the straight

3D turbulence simulations a direct verification of the spectraline and the dashed line in the insert indicating the 7/3 law.

law is difficult. Figure 8a shows the spectrum obtained fromas seen from the figure the spectrum follows this law sur-

a simulation run wittN®= 256’ modes and/=3, where the prisingly well. Hence we find that the spectral properties in
straight line indicates the Kolmogorov law. For a more quanp and 3D EMHD turbulence are very similar.

titative comparison we have plotted the local spectral expo-

nentu(k)=—dInE/dInk in the inset with the dashed line

at 5/3. Only locally atkd,~4 the exponent comes close to V. CONCLUSIONS

the theoretical value. At largde the spectrum is dominated We have discussed some important properties of EMHD
by the bottleneck effect well-known from 3D simulations of turbulence, which arises in higB-plasmas at sufficiently
Navier-Stokes turbulence, see e.g., Ref. 20, the local erew collisionality. Contrary to ordinary MHD, which de-
hancement of the spectrum above the inertial range powescribes the global dynamics of a plasma on scdles
law, which is the more pronounced the more abrupt the tran>c/w,;, EMHD refers to fast small-scale processks
sition from the inertial range to the dissipation range, i.e., the<c/w,;, where the ions can be considered infinitely heavy,
higher the order of the diffusion operater. (In 2D the such that the electron flow determines the electric current
bottleneck effect is in general much weaker than in 3D.density. As in MHD the existence of several ideal invariants
There is no indication of such a hump in the spectra showtimplies the presence of both direct and inverse cascade pro-
in Fig. 5. However, recent studies using still higher spatialcesses, where the energy follows a direct cascade both in 2D
resolutiort* show that also in 2D a bottleneck effect appearsand 3D. We have further investigated the behavior of 2D and

10 100
k
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3D EMHD systems using numerical simulation focusing oneffect, well-known from 3D hydrodynamic turbulence simu-
freely decaying turbulence. Whereas in MHD turbulence idations. We have not considered inverse cascade processes
generated or at least intensified by the tearing instability ofrising in EMHD, a topic left to future investigations.
current sheets, in EMHD small-scale turbulence arises be-
cause of the Kelvin-Helmholtz instability of the strongly
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