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Electron magnetohydrodynamic turbulence
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Electron magnetohydrodynamic~EMHD! turbulence is studied in two- and three-dimensional~2D
and 3D! systems. Results in 2D are particularly noteworthy. Energy dissipation rates are found to be
independent of the diffusion coefficients. The energy spectrum follows ak25/3 law for kde.1 and
k27/3 for kde,1, which is consistent with a local spectral energy transfer independent of the linear
wave properties, contrary to magnetohydrodynamic~MHD! turbulence, where the Alfve´n effect
dominates the transfer dynamics. In 3D spectral properties are similar to those in 2D. ©1999
American Institute of Physics.@S1070-664X~99!00103-2#
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I. INTRODUCTION

In many weakly collisional high-b plasmas, spatia
scales smaller than the ion inertial length and time sca
shorter than the ion cyclotron period can be excited. To
count for such phenomena we have to abandon the ma
tohydrodynamic~MHD! approximation and resort to a two
fluid description, where in addition to the ion equation
motion we consider the generalized Ohm’s law
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Here it is assumed that collisions are still frequent enoug
make the pressure isotropic, and the divergence of the s
tensor is replaced by a scalar viscous diffusion term. T
latter assumption is a very coarse approximation becaus
the strong difference between parallel~to the magnetic field!
and perpendicular viscosity in a plasma. Herene is essen-
tially the perpendicular electron viscosity, but the details
the viscous behavior are not important in the present cont
where the viscosity serves primarily as an energy sink. If
focus on the small-scale dynamicsl ,c/vpi , the ions can be
considered as a motionless neutralizing background, s
that the electron flow determines the electric current. On
sertion ofE into Faraday’s law we obtain a self-consiste
nonlinear equation for the magnetic field, which can be w
ten in the form
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Note that the pressure contribution vanishes on the u
assumptionpe5pe(n). Equation~2! is called electron mag-
netohydrodynamics~EMHD!, which has attracted conside
able attention in recent years. On the one hand, there are
applications to plasma opening switches andZ pinches, see,
e.g., Ref. 1. Here the mean density gradient plays a cru
role through the term¹(1/n)3( j3B) in Eq. ~2!. On the
other hand, special interest in EMHD arises in the field
quasicollisionless magnetic reconnection,2–5 which is gener-
ally believed to be responsible for the fast magnetic ene
release in many laboratory and space plasmas, in partic
in the geomagnetic tail. In this context the mean dens
gradient is less important. We therefore assume homo
neous density, which is consistent with the quasineutra
condition¹–j50.

Linearizing~2! about a static equilibrium embedded in
homogeneous fieldB gives ~neglecting dissipation!
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4pen
kiik3B150, ~4!

which yields the dispersion relation for the whistler,

v25
c4

vpe
4

Ve
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2k2

~11k2c2/vpe
2 !2

, ~5!

Ve5eB/mec. The whistler is a transverse circularly pola
ized wave, which rotates about the magnetic field in
sense of the electron cyclotron motion,

B156 i ~k/k!3B1 . ~6!

It is convenient to cast the EMHD equation into dime
sionless form using the whistler time scaletW

5L2(vpe /c)2/Ve , a typical field intensityB0 , and a typical
spatial scale lengthL,
© 1999 American Institute of Physics
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] t~12de
2¹2!B2¹3@ve3~12de

2¹2!B#5hn~2¹2!nB, ~7!

wherede5c/(vpeL). We have also introduced generalize
diffusion terms withn51 corresponding to resistivity an
n52 to ~perpendicular! electron viscosity. In numerica
studies of turbulence one often uses higher-order diffus
n.2 in order to separate nondissipative and dissipa
scales more clearly.

Reconnection processes are often considered in t
dimensional~2D! approximation. Assuming]z50, the mag-
netic field and current density can be written in the form

B5ez3¹c1ez~Bz01b!, ~8!

j5¹b3ez1ez¹
2c52ve ~9!

which indicates that the axial field fluctuationb acts as a
stream function of the poloidal electron flow. The tw
dimensional version of the EMHD equation~7! consists of
two equations forc andb:

] t~c2de
2 j !1ve•¹~c2de

2 j !5hn~2¹2!nc, ~10!

] t~b2de
2w!1ve•¹~b2de

2w!1B–¹j 5hn~2¹2!nb, ~11!

j 5¹2c, w5¹2b.

@The mean axial fieldBz0 does not appear in~11!, which is a
consequence of the incompressibility of the electron flo
One should however, keep in mind that a strong axial fi
will couple the ions to the electrons also on scales,di and
hence invalidate the EMHD approximation. HenceBz0

should not be too large, i.e., we are dealing mainly w
high-b plasmas,b;1.# In 2D linear whistler modes imply a
coupling of poloidal and axial field perturbations,

bk56kck , ~12!

which is the 2D analog of~6!.
Equations~10!, ~11! are formally similar to the equation

of 2D MHD, but are more complicated than the latter b
cause of the intrinsic scalede . Hence one has in general t
distinguish between the long-wavelength regimekde,1 and
the short-wavelength regimekde.1. Note that EMHD does
not reduce to MHD in the limitde→0. Actually EMHD is
only valid on scalesl ,di5Ami /mede , while MHD refers to
macroscopic scalesl .di .

II. IDEAL INVARIANTS

In turbulence theory the ideal invariants of the dynam
cal equations play an important role. It can easily be chec
that neglecting dissipation the EMHD equation~7! conserves
the energy

E5
1

2E ~B21de
2 j 2!d3x ~13!

and the generalized helicity

F5E ~A2de
2j !•~B2de

2¹2B!d3x, ~14!
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d

¹3A5B, which for de→0 reduces to the magnetic helicit
H and for de→` to the ~electron! kinetic energyHV. Ex-
pression~14! also contains terms}* j–Bd3x reminiscent of
the cross-helicityK5*v–B in MHD.

In 2D the ideal equations conserve the following qua
tities, the energy

E5
1

2E $~¹c!21b21de
2@ j 21~¹b!2#%d2x, ~15!

the generalized helicity

F5E ~b2de
2¹2b! f 8~c2de

2 j !d2x, ~16!

and a quantity containing only the electron canonical m
mentump5c2de

2 j ,

G5E g~c2de
2 j !d2x, ~17!

where f and g are arbitrary functions. Since in turbulenc
theory the quadratic invariants are most important, the app
priate choice isf (x)5g(x)5x2. Expressions~15!–~17! are
generalizations of the corresponding quantities in 2D MH
As in MHD one expects a direct cascade of the energy
inverse cascades of the helicityF in 3D and the mean squar
momentumG in 2D. Here we are mainly concerned wit
processes associated with the direct energy cascade, lea
the investigation of inverse cascades in EMHD to a futu
study. Though we find that EMHD and MHD turbulenc
share many properties, which is primarily due to the dir
cascade of the energy, there are, however, also distinct
ferences.

III. 2D EMHD TURBULENCE

Two-dimensional turbulence has previously been c
sidered in various different systems, notably hydrodynam
~see e.g., Refs. 6,7!, MHD ~e.g., Ref. 8! or Hasegawa-Mima
equation ~e.g., Refs. 9, 10!. These studies are motivate
partly by special applications, where the dynamics of
system is quenched in one direction, for instance by a str
magnetic, but partly also because these systems reveal i
esting turbulence properties, which are numerically m
easily accessible than in fully 3D systems. Also in EMH
first studies that have appeared recently, are concerned
2D turbulence.11,12 In this section we therefore focus on 2
EMHD turbulence, which exhibits a number of interestin
and unexpected properties, before we discuss the 3D ca
Sec. III, which turns out to be rather similar to the 2D b
havior.

In addition the numerical simulations discussed in t
paper refer only to decaying turbulence. This has the adv
tage, that in a self-similarly decaying state, which has
come independent of the initial conditions, we are deal
only with the intrinsic properties of the turbulence, contra
to forced turbulence, which may reflect particular features
the forcing. On the other hand studies of decaying turbule
may be affected by the lack of stationarity. For instance
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spectral energy flux is not strictly constant in the inert
range, though the variation is small for a sufficiently bro
extent of this spectral range.

A. Turbulence generation

At small values of the dissipation coefficients an EMH
system, starting from smooth initial conditions, tends to g
erate sheet-like structures, which subsequently break up l
ing to fully developed turbulence. In resistive MHD curre
sheets of thicknessd;h1/2 are generated, which are rath
stable subject only to tearing instability at high sheet asp
ratio D/d;102,8 where D is the sheet length. The plasm
flow v along the sheet is stable owing to the parallel m
netic field generated by the current, which is strong eno
vA.v to suppress the Kelvin-Helmholtz mode.13 ~Originally
the term Kelvin-Helmholtz mode refers to the instability of
vortex sheet, i.e., the interface between two regions mov
at different velocities. Here we consider the bending ins
bility of a fluid jet, i.e., a vortex double layer.! In an EMHD
current sheet conditions are quite different. Here conse
tion of the canonical momentump5c2de

2 j , Eq. ~10!, re-
quires that the magnitude of the axial current densityj is
limited, j ;c/de

2 , even in much narrower structuresd!de ,
such that the poloidal field generated by this current is w
B;cd/de

2 . The poloidal electron flow or current density
of the order of the axial one¹b;b/d; j , reflecting the
whistler property~12!. The parallel field is too weak by a
factor d/de to stabilize the ~electron! Kelvin-Helmholtz
mode, which is hence expected to grow for sheets thin
thande , where theB•¹j term in ~11! becomes small, reduc
ing ~11! to the Euler equation for the electron flow. Th
Kelvin-Helmholtz instability of an EMHD vortex sheet i
the absence of a poloidal magnetic field, where Eq.~11! re-
duces to the Hasegawa-Mima equation, has recently b
studied by Bulanovet al.14,15

The process of turbulence generation is illustrated
Figs. 1a–d. Equations~10! and~11! are solved on a quadrati
box of edge sizeL52p with periodic boundary conditions
using a standard pseudospectral method withN2 modes or
collocation points and dealiazing according to the 2/3 ru
hence only (2/3)2N2 modes are actually advanced. The d
sipation terms are integrated exactly. In Fig. 1 we have c
sen the smooth initial state

c~x,y!5cos~2x12.3!1cos~y14.1!, ~18!

b~x,y!5cos~x11.4!1cos~y10.5!, ~19!

which has been introduced in Ref. 8 as configurationA1

generalizing the Orszag-Tang vortex, and we usede51, n
53, h351028 andN51024. ~Results are similar forn52,
whereasn51 corresponding to a pure friction term at highk
is in general found to be insufficient to prevent the format
of singularities.! At time t52.0 extended thin sheets hav
been formed illustrated most clearly in a plot of the ‘‘vorti
ity’’ w5¹2b, Fig. 1a. Subsequently these sheets are
rupted by the onset of instability, Figs. 1b, 1c. In the fi
phase the dynamics of this instability is identical to t
Kelvin-Helmholtz mode of a fluid jet,13 as becomes clea
when rerunning the simulation withc50 set at t52.0,
l
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which eliminates the small termB–¹j and thus reduces~11!
essentially to the Euler equation. At later times the dynam
is, however, different in both cases. While the Kelvi
Helmholtz instability of the Euler system only leads to a s
of isolated weakly interacting vortices well-known from 2
hydrodynamic turbulence, Fig. 2, the EMHD system rema
in a strongly turbulent state consisting of vortices and m
crofilaments, Fig. 1c. The latter are constantly regenerate
the small termB–¹j , which then break up again into vorti
ces, thus maintaining the turbulent dynamics. Figure 1d
lustrates the canonical momentump at t54, which exhibits
the characteristic features of a purely convected quantityp
5c2de

2 j .2de
2 j , sincec is a smooth function.

B. Turbulent energy dissipation

The small-scale turbulent eddies give rise to efficie
energy dissipation

dE

dt
52h3E d2x@~¹2 j !21~¹w!2#52e. ~20!

The energy dissipation ratee increases from the very low
level in the smooth initial state to a maximum, where turb
lence is fully developed, and subsequently decays in a s
similar way. An important result is, thate(t) is independent
of the value of the dissipation coefficient, as shown in Fig
where the time evolution ofe is plotted for different values
of h3 . Here we start from ‘‘random’’ initial conditions
calledB-type in Ref. 8,

ck5exp~2k2/2k0
212p iak!, ~21!

bk5exp~2k2/2k0
212p ibk!, ~22!

where k25kx
21ky

2 , kx,y561,62, . . . , ak ,bk are random
phases, and the dominant initial wave number isk055. Fig-
ure 3a refers to relatively largede50.3. Shown are three
cases,h351028 ~dashed line!, 1029 ~dashed-dotted!, and a
case starting with 1028, switching to 1029 at t50.5 and to
10210 at t51 ~solid!. On reducing the dissipation coefficien
the system responds by exciting smaller spatial scales
that the dissipation rate soon reaches the previous level
a weak overshoot. Figure 3b gives similar plots for a sma
value de50.033. Here the dashed curve corresponds toh3

51028, while in the solid lineh3 is switched to 1029 at t
50.5 and to 10210 at t51. At t51.4h3 is switched down
further to 10211 ~dashed-dotted!. This behavior of the energy
dissipation rate is similar in 2D MHD turbulence.8

The energy dissipation rate does, however, depend ode

as is obvious by comparing Figs. 3a and 3b. We finde(t)
.2(1/de)Ė0(t/de), i.e.,E(t)5E0(t/de). This behavior can
be seen from Eqs.~10!, ~11!. Since the termB–¹j in ~11! is
responsible for the energy transfer giving rise to the dir
energy cascade as discussed above, we have approxim

d

d~ t/de!
E

0

k

Ekdk.2deE
0

k

@B–¹j #kdk.

Figure 3b also suggests thatE(t) decays as a power law
roughlyE;t21, which is similar to the energy decay law i
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FIG. 1. Generation of small-scale turbulence by the Kelvin-Helmholtz instability. Plots ofw(x,y) at t52.0 ~a!; t52.4 ~b!; t54 ~c!. p(x,y)5c2de
2 j at t

54.
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2D MHD turbulence.8 We can, however, not exclude a d
pendence on the initial conditions as discussed in Ref. 1

The self-similarity of the decaying turbulence al
shows up in the constancy of the ratio of certain macrosco
quantities. Figure 4 displays the time development of
ratios of the axial and poloidal kinetic energiesRj

5^ j z
2&/^ j p

2&, where j p
25(¹b)2, and of the corresponding

field energiesRB5^(¹c)2&/^b2&. The simulations give the
valuesRj.1.5 andRB.3, independently ofde . These re-
sults reflect the linear whistler property~12!, which remains
qualitatively valid also in the nonlinear regime.
.

ic
e

C. Energy spectrum

A characteristic statistical quantity of a turbulent syste
is the energy spectrum, which for isotropic turbulence is c
veniently considered in the angle-integrated fo
Ek ,*Ekdk5E. While 3D hydrodynamic turbulence exhibit
the spectrumEk}k25/3, the famous Kolmogorov law, entro
phy conservation in 2D enforces an inverse energy casc
which leads to a much steeper spectrumEk}k2m, m.3. In
MHD turbulence energy transfer is different because of
Alfvén effect.17,18 The magnetic field in the large energy



u
g
av

ic

er
e

c-

re

is
ic
e

s
es
l-
,

lar

es
-
wn

ci-
the
gy
rum
e

-
ith
nce
ergy

. 5b:

e-
ible
he

for

755Phys. Plasmas, Vol. 6, No. 3, March 1999 Biskamp et al.
containing eddies acts as a guide field on small-scale fl
tuations, which behave as Alfve´n waves propagating alon
the large-scale field. Since only oppositely propagating w
packets interact, the interaction time is the Alfve´n time tA

5 l /vA , which is much shorter than the hydrodynam
scrambling timet l5 l /v l , wherev l is the velocity fluctua-
tion amplitude at scalel . Hence the spectral energy transf
rate is reduced, which should lead to a flatter energy sp
trum, Ek}k23/2. This so-called Iroshnikov-Kraichnan spe
trum is indeed found in 2D numerical simulations.~Obser-
vations of MHD turbulence in the solar wind give a mo
complex picture.!

In EMHD turbulence the linear perturbations are wh
tlers propagating along the large-scale magnetic field, wh
could give rise to a ‘‘whistler effect’’ analogous to th

FIG. 2. w(x,y) at t55 from the simulation shown in Fig. 1, but withc
50 set att54.

FIG. 3. Energy dissipation ratee52dE/dt from simulations with~a! de

50.3; ~b! de50.033, for various values of the dissipation coefficienth3 .
c-

e

c-

-
h

Alfvén effect in MHD. However, contrary to Alfve´n waves,
the whistler is dispersive with high group velocityvg}k for
kde,1 and small group velocityvg.0 for kde.1 as seen
from the dispersion relation~5!. Because of these propertie
EMHD cannot be written in terms of the whistler variabl
bk6kck as can be done in MHD by introducing the E
saesser variablesv6B. Hence it is an interesting question
whether in EMHD whistler propagation produces a simi
correction to the energy spectrum as does the Alfve´n effect
in MHD.

We have to distinguish between the different rang
kde.1 andkde,1. In the former range numerical simula
tions reveal an almost exact Kolmogorov spectrum as sho
in Fig. 5a. Evaluating different turbulent states we obtain

Ek5Ce2/3k25/3 for kde.1, ~23!

whereC51.860.1. Since in this range time scales asso
ated with the whistler interaction become longer than
nonlinear eddy scrambling time, the Kolmogorov ener
transfer process should dominate leading to the spect
~23!. It is worth noting that this spectral law is found to b
valid over the entire rangekde.1 and not only asymptoti-
cally for kde@1. We will come back to this point below.

In the opposite casekde,1 the character of the turbu
lence is different, structures resembling those in MHD w
current sheets mainly aligned along the magnetic field. Si
small-scale structures are less pronounced, a steeper en
spectrum can be expected. This is indeed observed, Fig

Ek}k2m, m52.2560.1 for kde,1. ~24!

Let us compare this finding with theoretical predictions. N
glecting linear mode propagation effects, i.e., a poss
whistler effect, we apply a Kolmogorov-type argument. T

FIG. 4. Time evolution of the ratios of kinetic and magnetic energies
two runs with~a! de50.3 and~b! de50.01.
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interaction time for eddies of scalel is t l5 l /v l; l 2/bl .
Hence the energy transfer rate, which is constant in the i
tial range, becomes

e;El /t l;bl
3/ l 2,

i.e., bl
2;e2/3l 4/3 and therefore

Ek5k2ucku21ubku2;ubku2; lbl
2;e2/3k27/3, ~25!

usingk; l 21. By contrast, if the whistler effect would dom
nate the dynamics in a way the Alfve´n effect does in MHD
turbulence, the energy transfer consisting of many weak
counters of oppositely traveling wave packets would be
duced leading to a flatter spectrum, which can be estima
by the following argument. The whistler interaction time
tW; l /vg( l ); l 2/(de

2Ve). During this time the change of en
ergy isdEl;bl

2tW /t l . Because of the random nature of th
process the energy transfer time is rather long,

tE;~El /dEl !
2t l;t l

2/tW;de
2Vel

2/bl
2 .

From e;bl
2/tE we thus obtain

Ek;~ede
2Ve!

1/2k22. ~26!

The simulation result clearly favors thek27/3 law, which
indicates that even forkde,1, where wave propagation e
fects are strong, they do not dominate the spectral tran

FIG. 5. Compensated plots of the energy spectrum.~a! k5/3Ek for de50.3;
~b! k7/3Ek for de50.01.
r-

n-
-

ed

er

process, though they are sufficient to establish equiparti
of poloidal and axial field energiesk2ucu2.ubku2 in this
range.

It is interesting to note that the transition between t
two spectral ranges is rather sharp, as demonstrated in Fi
Here the energy spectrum for a case withde50.02 is plotted
for two values ofh3 . While for the higher dissipationh3

51029 the spectrum remains within thek27/3 regime, for
lower dissipationh3510211 it extends into thek25/3 regime,
where the rather abrupt crossover occurs atkde.0.5. This
behavior is caused by the Kelvin-Helmholtz instabilit
which sets in, when the dissipation scale becomes sma
thande . Figure 7 illustrates the turbulence in such a syste
The large- and medium-scale structures represent the dyn
ics when electron inertia can be ignored, while at the sm
scales the effect of the Kelvin-Helmholtz instability
clearly discernable.

IV. 3D EMHD TURBULENCE

The 2D approximation considered in the previous s
tion is only justified, if the axial fieldBz0 is large enough to
suppress Kelvin-Helmholtz instability by the currentj z in the
third direction. In the absence of a mean field the turbule
becomes genuinely three-dimensional. Such behavior ha
cently been studied in 3D simulations of magnetic reconn
tion in the framework of EMHD.19 It has been found tha
Kelvin-Helmholtz instability is excited more readily inz di-
rection than in the poloidal plane leading to a thre
dimensional turbulent behavior. Though the reconnection
not faster than in the laminar case, since already in the la
the reconnection rate is fast, independent of the electron
ertia depending only on the large-scale configuration, the
ergy dissipation~5electron heating!, which is very weak in
the laminar state, becomes large and independent of the
crophysics.

FIG. 6. Compensated energy spectrumk5/3Ek from two runs with de

50.02. ~a! for h351029 the spectrum remains within thek27/3 regime;~b!
for h3510211 the large-k part extends into thek25/3 regime with the cross-
over occurring atkde.0.5.
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Here we consider the case of 3D homogeneous tu
lence analogous to the 2D studies presented in Sec. II. E
tion ~7! is solved on a cubical box with periodic bounda
conditions using a similar numerical scheme as in the
simulations. Again we first consider the inertia-dominat
regime kde.1. Here ~7! reduces to the 3D Navier-Stoke
equation for the electron flow written in the vorticity form
¹3ve5¹2B. Contrary to the 2D case, where the smallB–¹j
term had a strong influence on the dynamics generatin
direct energy cascade instead of the inverse one in the
Navier-Stokes turbulence, the small terms, i.e., those
multiplied by de

2 have little effect in this range. Hence th
turbulence has the characteristics of 3D Navier-Stokes tu
lence, spatial structures are found to be very similar. Also
energy spectrum is expected to follow the Kolmogorov l
~23!. Because of the short wave number range available
3D turbulence simulations a direct verification of the spec
law is difficult. Figure 8a shows the spectrum obtained fro
a simulation run withN352563 modes andn53, where the
straight line indicates the Kolmogorov law. For a more qua
titative comparison we have plotted the local spectral ex
nentm(k)52d ln Ek /d ln k in the inset with the dashed lin
at 5/3. Only locally atkde;4 the exponent comes close
the theoretical value. At largerk the spectrum is dominate
by the bottleneck effect well-known from 3D simulations
Navier-Stokes turbulence, see e.g., Ref. 20, the local
hancement of the spectrum above the inertial range po
law, which is the more pronounced the more abrupt the tr
sition from the inertial range to the dissipation range, i.e.,
higher the order of the diffusion operatorn. ~In 2D the
bottleneck effect is in general much weaker than in 3
There is no indication of such a hump in the spectra sho
in Fig. 5. However, recent studies using still higher spa
resolution21 show that also in 2D a bottleneck effect appea

FIG. 7. Plot ofw(x,y) for de50.02,h3510211, illustrating the coexistence
of both kde,1 andkde.1 turbulent structures.
u-
a-

D
d
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D

ot

u-
e

in
l
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n-
er
n-
e

.
n
l
,

which is nonlocal contrary to the 3D behavior, and m
hence blur the spectral law at high Reynolds numbers.!

In the long-wavelength regimekde,1 EMHD is differs
distinctly from the Navier-Stokes theory, and it is interesti
to see, whether the 2D spectral behavior;k27.3 persists in
3D. Figure 8b gives the energy spectrum from a simulat
run with de50.02, n53 and againN352563, the straight
line and the dashed line in the insert indicating the 7/3 la
As seen from the figure the spectrum follows this law s
prisingly well. Hence we find that the spectral properties
2D and 3D EMHD turbulence are very similar.

V. CONCLUSIONS

We have discussed some important properties of EM
turbulence, which arises in high-b plasmas at sufficiently
low collisionality. Contrary to ordinary MHD, which de
scribes the global dynamics of a plasma on scalel
.c/vpi , EMHD refers to fast small-scale processesl
,c/vpi , where the ions can be considered infinitely hea
such that the electron flow determines the electric curr
density. As in MHD the existence of several ideal invarian
implies the presence of both direct and inverse cascade
cesses, where the energy follows a direct cascade both in
and 3D. We have further investigated the behavior of 2D a

FIG. 8. Energy spectrum of 3D EMHD turbulence.~a! de51. The straight
line indicates the Kolmogorov spectrumk25/3, the insert gives the loca
spectral exponentm(k)52d ln Ek /d ln k. ~b! de50.02. The straight line
indicates the spectrumk27/3.
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3D EMHD systems using numerical simulation focusing
freely decaying turbulence. Whereas in MHD turbulence
generated or at least intensified by the tearing instability
current sheets, in EMHD small-scale turbulence arises
cause of the Kelvin-Helmholtz instability of the strong
sheared electron flows in the current sheets. 2D EMHD pr
erties are most notable. Turbulent energy dissipation r
are found to be independent of the value of the diffus
coefficient, a property already encountered in 2D MH
which is connected with the direct cascade of the ene
The spectral energy transfer process is, however, differ
Though there is a linear mode, the whistler, propagat
along the magnetic field, it does not dominate the trans
dynamics, contrary to the Alfve´n effect in MHD. The spec-
tral transfer seems to be local giving rise to a 5/3 Kolmo
orov spectrum for small scaleskde.1, and a somewha
steeper 7/3 spectrum for long wavelengthskde,1. The
crossover occurs atkde.0.5 and is found to be rather abrup
which is caused by the onset of Kelvin-Helmholtz instabil
as soon as scales drop belowde .

Fully three-dimensional EMHD turbulence, which is e
pected to arise in the absence of a mean magnetic field
hibits the same spectral characteristics as 2D turbulenc
particular the 7/3 spectrum in the rangekde,1. For short
wavelengthkde.1 EMHD reduces to the Navier-Stoke
equation. While in the 2D case the weak additional ter
play an important role causing the direct energy cascade
violating the entrophy invariance, which is the origin of th
inverse energy cascade in 2D Navier-Stokes theory, in
EMHD and Navier-Stokes are rather similar at small sca
However, the Kolmogorov law is only marginally verified i
the 3D simulations, since because of the short extent of
inertial range the spectrum is dominated by the bottlen
s
f
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effect, well-known from 3D hydrodynamic turbulence sim
lations. We have not considered inverse cascade proce
arising in EMHD, a topic left to future investigations.
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