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Effect of Inhomogeneity on Spiral Wave Dynamics
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The effect of weak inhomogeneity on spiral wave dynamics is studied within the framework of
the two-dimensional complex Ginzburg-Landau equation description. The inhomogeneity gives spatial
dependence to the frequency of spiral waves. This provides a mechanism for the formation of a
dominant spiral domain that suppresses other spiral domains. The spiral vortices also slowly drift in
the inhomogeneity, and results for the velocity are given. [S0031-9007(98)08283-0]

PACS numbers: 82.40.Ck, 47.32.Cc, 47.54.+r

Spiral waves occur in such diverse situations as cardia€he topological charger = =1 results in @27 o phase
arrythmias [1], reaction-diffusion systems (such as thaincrement ofA for a counterclockwise circuit around the
describing the Belousov-Zhabotinsky reaction) [2,3], andvortex center £ = 0) where A = 0. For larger, the
slime mold colonies [4,5]. In this paper we consider the efsolution (2) is locally a plane wave of wave number
fect of an inhomogeneity of the supporting medium on spi%,. Using the rescaling of. to unity, the frequency,
ral wave dynamics. For example, in the case of arrythmiassatisfies the dispersion relation, = « + (8 — a)k?.
cardiac tissue is inherently inhomogeneous. For slim&he real functiong'(r) = |A| and(r) have the following
mold, an excitation inhomogeneity forms due to the sortincgasymptotic behaviorF ~ ' ~ r asr — 0 and F —
of the prestalk and prespore cells and the inhomogeneity'l — k2, ' — k, asr — . It is found that, in an
results in spiral vortex motion [5]. As a potential exampleappreciable region dfx, 8) parameter space, spiral wave
involving chemical reaction-diffusion systems, in Ref. [3] solutions are stable, and that spiral waves naturally form
the chemical reaction rate was varied using its sensitivitfrom fairly arbitrary small initial perturbations frorh = 0
to red laser light intensity. This could conveniently pro-[8]. In this regime, to which we restrict our considerations,
vide the means to create an inhomogeneity for a test of out evolves toward a quasifrozen (i.e., very slowly evolving)
theory by having the intensity vary over the entire systenstate in which there are spiral wave domains with
(other sources of reaction rate inhomogeneity are temperapproximately described by (2) separated by narrow walls,
ture inhomogeneity and inhomogeneity of the gel or porousr “shocks” [9], with each domain having a vortex in its
glass medium in which chemical reaction-diffusion experi-interior.
ments are often done, etc.). We now ask what is the effect on the above in the case of

We find that, for a weak inhomogeneity, the evolutionan inhomogeneity that occurs over a large length scale. In
proceeds on distinct time scales. In particular, we findhe expansion yielding (1) from a typical physical model
that, after spirals first form, the inhomogeneity causes cersuch as a system of reaction-diffusion equations [6], the
tain spirals that are favorably located in the inhomoge{owest order effect of the inhomogeneity is that the local
neous medium to widen their domains, crowding out andrequency and growth rate of excitation depend on space.
sweeping away less favorably located spirals. In additionThus we set
the spiral vortices slowly drift with a velocity linearly re- w =y +iQ,y), 3)

lated to appropriate gradients of the background medium i i
properties. wherey and() are slowly varying real functions af and

Our studies of these effects are based on the two! (t0lowestorder andg remain constant). Note thatina

dimensional complex Ginzburg-Landau equation physical system the inhomogeneity will be significant if the
’ spatial variation of the local non-normalized dimensional

A =pA — (1+ia)|APA+ (1 +iB)V?A, (1) frequency or growth rate is comparable to the growth rate.
Hence, nearer the Hopf bifurcation, a relatively small de-
gree of inhomogeneity in physical parameters becomes sig-

geneous state is oscillatory and near a Hopf bifurcatioﬁ'ﬂcag; d %O?foenquﬁglg" Wgt.gﬁ ngt é?astré(é[ thj céevl[zétlgr;s
[6]. The equation is obtained as a balance between weqsm;’” [10] I spatially averaged vaiues
rowth[Re(u)], weak nonlinearity|A|?A term), and weak . - , . .
gpatial couéfingWA term). In thggse ofa gomogeneous. We begin Ipy describing a numerical sol.utlon of (1) .W'th
mediuma and B are real constants, and can be set to inhomogeneityu, Eg. (3). In the short time dynamics,

unity by an appropriate rescaling of (1). A spiral wave soJustasin the h_omogeneous cage< 1), a random initial
lution to Eq. (1) then has the general form [7] condition consisting of many small amplitude plane waves
' rapidly leads to the formation of spiral wave domains dis-

A(r,0,1) = F(r)exgi[o0 — w,t + ¢(r)]}. (2) tributed throughout the system. Figure 1 shows the time

whereA(x, y, t) is complex. This equation provides a uni-
versal description for extended media in which the homo
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vortex 2;k;, andk,  are the wave vector components
normal to the domain wall for the solution to the local dis-
persion relationw;s = ay(x) — Q) + (B — a)kia,
evaluated at the domain wall. As a simplification, we note
that in the situation to which we apply (5) below, and

k, are approximately perpendicular to the domain wall at
the intersection of the line joining vortices 1 and 2 with the
moving domain wall. This simplification allows the phases
for the two spirals to be written asw;,r + kj2ri2,
wherer , is the distance from vortex 1(2) to the domain
wall along the line between the two vortices. Equating
the phases and differentiating with respect to time=
dri/dt = —dr,/dr) then gives (5) withk,, |, replaced by
k1, for the domain wall velocity along the line joining the
two vortices. (Note that this argument neglects motion of
the vortices [such as the slow drift due to inhomogeneity,
Eq. (7)].) Working in the parameter reginie< « gives

k1, k, < 0 (in order to have outgoing group velocity from
a vortex), and we see from (5) that the domain of the spiral

with the lowest frequency will grow (the wall velocity is
away from the lower frequency vortex) while the domain
with the larger frequency will shrink.

As time progresses, one spiral (or more depending on
the precise details of the inhomogeneity) will dominate
over the other spirals. In the parameter regipes «, it
will be the spiral with the lowest frequencygthat dominates.
; 4 ) In our system,w = w, — c;Sin(y/40)cos(x/80), and
Fig. 1 the darker regions have lowet|. The domain g the dominant spiral (labelddl in Fig. 1) will be the
walls are seen as ridges of lighter shade (laigé), and  gyira| that forms closest t),207). Indeed, looking at

the vortices |A| = 0) appear as the centers of dark spots.igg 1(3) and 1(b), we see that the dominant spiral is
Figure 1(a) shows this system at time 400 to have maniy, q spiral closest t@0,207). Figure 1(b) also shows a

spiral vortices, just as in the homogeneous case. Wheregg o ghira| (labeled). We see that a domain wall has
the homogeneous case results in spirals all with the samg, pushed by towardZ, and in Fig. 1(b) this wall is
frequency w,, the inhomogeneity causes spirals at dif-p\,, close tar.. At this point, the lesser spirdl interacts

ferent Iocations .to'have different frequenci.es. Assumin%trongly with the domain wall [12] and we observe that it
slow spatial variations o allows a rescaling of (1) to is swept away at the speed of the domain wall
give the asymptotic frequency for a spiral vortex at the '

location(x, y) to be

FIG. 1. Time evolution ofA(x, y)|.

evolution of the magnitude oA for the following pa-
rametersa = 034, B = —145, vy =1+ f(x,y), f =
c1 sin(x/40) sin( y/40), Q = ¢, sin(y/40) cog(x/80) +
w,f(x,y), c; = 0.3, c; = 0.05, andw, = 0.08145. In

wp — wr
kp

, (6)

w(x,y) = w,y(x,y) — Q(x,y). 4)

[For y andQ used in the simulation of Fig. 1 the range Where the subscript® and L stand for dominant and
of the spiral vortex frequency from thér,y) point of  lesser spiral. [Equation (6) results from an argument simi-
minimum o to maximume is Aw /w, = 1.2.] The fre- lar to that used in deriving (5) except that now we take
quency difference between waves emitted by vortices df1€ L vortex to move with the same speed as the wall ]
different locations causes the domain walls between spiral§s time proceeds furtherl. is swept into a wall and

to move. The domain walls must satisfy the conditionOCccupies a negligible domain area. Furthermore, vortices
that the phase of matches across the domain wall [9,11]. ©f opposite charge embedded in the walls are observed to
Applying phase matching between two spirals, 1 and 2merge and annihilate [e.g., compare Figs. 1(b) and 1(c)].

assuming that both spiral vortices are far from the domairf hus, after some time all the lesser spirals get swept away
wall, gives a domain wall velocity of and the domain of the dominant spiral occupies nearly all

the area. This is illustrated in Fig. 1(c).
- - @2 (5) The inhomogeneity not only creates a dominant spiral
ki + koo but also causes spiral vortices to drift [13]. This can be
where the reference positive directionwpoints towards seen by comparing Fig. 1(b) to Fig. 1(d) and observing
spiral 2 [11]. In (5),w; and w, are the spiral frequen- the dominant spiral’s drift to the left. In the case of an
cies given by (4) evaluated at the locations of vortex 1 andhhomogeneity with a scale length much greater than one,

v
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the drift will be linearly related to the gradient of the

inhomogeneoug. = y(x,y) + iQ(x,y). We recast the
inhomogeneityu into an inhomogeneity of the growth
rate y of homogeneous perturbations from= 0 and
the frequencyw of the spiral wave solution by defining
w(x,y) as in (4). The drift velocity of the spiral vortex
depends only on local properties, i.&y and Vw, of

the inhomogeneity. The most general linear form of the

drift velocity of a spiral vortex located dtc,y) can be
expressed as

v(x,y) = — 171w,||Vw + O'r?'lw’lﬁo X Vo
(7)

Rescaling the coefficients: by introducing m = ym,
makes then's independent ok andy and dependent on
a and g only. We also find thatz, , = 0 andm,, ) =
(1 + B?). To obtain this result consider for simplicity
the velocity of a spiral vortex as it passes througks

0 in the inhomogeneityQ)(x,y) = exx, y(x,y) =1 +
€1x which givesw = w, — (e — w,€1)x. In order to
have a velocity only due t&y, sete, = w,€; so that
Vw = 0. We look for a solution with no drift along the
perpendicular t&/y (y direction) and so transforming (1)
to the comoving frame gives

A — v, 0, A=[1+ (e +ie))(x + v, 1)]A
— (1 +ia)APA+ (1 +iB)V?A.
(8)

Assuming thatv, ~ €; ~ ¢, is small, we neglecO(e?)
terms and let(x,y, 1) = e*¥' "0/ Al(x',y"), where

x'=x+ (€/4) (x> —y»)andy' = /yy = (1 + €x/
2)y. This then transforms (8) into

vedpA =A — (1 + ia)|APA + (1 + iB)
X [V2A" + ik + €)apA].
Settingk = —B€;/2 andv,

— 171%||Vy + O'I’Nn%J_ﬁo X Vy.

—iw,A —

—(1 + B?)e;, cancels the

d.A’ term and gives back Eq. (1). Thus (7) becomes [14]

9

The coefficientsyn,, | andm,, , , are found numerically
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FIG. 2. Velocity coefficientsn,, ; andm,  plotted versusx
with B = —1.

w,(a,B). For example, Egs. (10) and (11) convert
knowledge ofm, andm,  along the lineB = —1 in
parameter space (as in Fig. 2) to knowledgemgf; and
m,., atanypoint(a’, B').

In Fig. 3(a), for the system used in Fig. 1, we plot the
trajectory of theD spiral vortex from the simulation of (1)
along with the trajectory of Eq. (9) starting with the spiral
location from the simulation at time 650. At the end of the
simulation the spiral has essentially reached a fixed point
wherev from (9) is zero [17]. Note that, at this fixed
point, the frequency of the spiral is no longer the lowest
available in the medium. If a new spiral could form at the
initial location of the dominant spiral, it would overwhelm
the present spiral. However, this does not happen since the
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[15] using a procedure similar to that outlined in [16].
Figure 2 shows a typical plot of these coefficients as a
function of o with B8 = —1 [15]. Using a similarity
transformation [7] results in relations which transform
from m,, (a, B) to m, (a’,B’) and similarly for the
perpendicular coefficient. These relations are

1+ B3A
1+ w,A)

me (a’, B') = + Zmy (e, B), (10)

Mo, (a', ') = Zm, (@, B), (11)

A=(B—-p)/0+BB)=(a—a)/1+
S =[(0+ w,A)/(1 + BA)P, and o, =

where
aa'),

FIG. 3. (@) Vortex trajectory.x denotes the initial condition.
The solid line is the result from the theory, Eg. (9), and
the open circles are data from the numerical experiment.
(b) Velocity in the x direction (in units of 10~3) plotted as

a function ofx.
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resulting configuration is stable, and there is no mechanism L. Aranson, L. Kramer, and A. Weber, Phys. Rev.48,

in (1) leading to the nucleation of new spirals. Figure 3(b) R2992 (1992).

shows good agreement of the velocity in thdirection as ~ [9] T. Bohr, G. Huber, and E. Ott, Physica (Amsterdam)

a function ofx between the theory from (9) (solid line) and 106D, 95 (1997). _ _ _

the numerical simulation (open circles). [10] In this Letter we have restricted conS|derat|or! to the case
We note that our observation of two time phases of ~ Y(t:¥) > 0 everywhere. The effect of <0 in some

the motion, one where the primary role is played by wall regions will be dealt with in [15],

. ; 11] K. Nam, E. Ott, M. Gabbay, and P. Guzdar, Physica
motion [Egs. (5) and (6)] and one where the primary role[ ] (Amsterdam)118D, 69 (1998).3/ "z ys!

is played by vortex drift linear in the gradients [Eq. (9)], [12] M. Vinson, Physica (Amsterdani}16D, 313 (1998).
is due to the assumption of slow variationpfind(. In  [13] A.M. Pertsov and Ye.A. Yermakova, Biophysias, 364

particular, two vortices sufficiently far apart (e.§.andD (1988).

in Fig. 1) can have a substantial difference in frequencyf14] The factor(1 + 82) in Eq. (9) also comes up in the re-
The velocityv from (5) and (6) can then be substantial lated treatment of the motion of curved vortex filaments
even for slow variation ofy and ). Thus the velocities in the three-dimensional complex Ginzburg-Landau equa-

from (5) and (6) can be much larger than that from (9), EO“- 78'\/'-2061512'3'0?)5;5 7E %trt; and PAN- Gu;d%r, 8F|>3hy§.71Rev.
implying the observed evolution on two time scales. We (f;t§8) ’ (1997); Physica (Amsterdartil8D,

also. emphasize that th.e linear relation be_:tween the d”?ls] Details of this calculation will be given in a longer report
motion and local gradients [Eq. (9)] applies only for a

. - of this work [M. Hendrey, E. Ott, and T. M. Antonsen, Jr.
slowly varying inhomogeneity and does not apply for more (to be published)].

rapidly varying inhomogeneities [15,16(b),18]. [16] (a) I. Aranson, L. Kramer, and A. Weber, Phys. Rev.
In conclusion, an inhomogeneity of the medium in the | ett. 72, 2316 (1994); (b) ifSpatio-Temporal Patterns in
complex Ginzburg-Landau equation has several effects.  Nonequilibrium Complex Systems: NATO Advanced Re-
The frequency difference between spirals in the inhomoge-  search Workshopedited by P.E. Cladis and P. Palffy-
neous system causes domain walls to move. fFer o Muhoray (Addison-Wesley, Reading, MA, 1995), p. 479.
(8 > «) this then leads to spiral domination of the lowest ~ Section 7 of the latter paper provides results for the case
(highest) frequency spiral as the lesser spirals get swept pf a strongly localized axisymmetric real inhomogene-
away at the speed of the domain walls. The inhomogene- Y Of extent of the order of a wavelengtlf, (x,y) =
: : : . . . : 0.3exd —(x* + y?)/I?], wherek,l = 1. They also dis-
ity results in slow spiral vortex drift with a drift velocity S .
proportional to the gradient of the inhomogeneity. Cusslan t|_nert_|al|tk eb.ﬁfeft Olf the spirals re\l/steg th tr:f core
. acceleration insta or large eno e defer dis-
M. H. thanks Michael Gabbay and Parvez Guzdar for pole e g ugh I

) ; . . cussion of this to Ref. [15].
the use of their computer simulation code. This work wag17] more generally, the equation for vortex motiafit /dr =

supported by the Office of Naval Research. 7(¥), with o given by (9) is an autonomous two-
dimensional dynamical system and is expected to have
fixed point attractors (as in our example) or limit cycle
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[2] (&) A.T. Winfree and W. Jahnke, J. Phys. Chef8, saddle fixed points. See, for example, M. W. Hirsch and
2823 (1989); (b)Chemical Waves and Patternedited S. SmaleDifferential Equations, Dynamical Systems, and
by R. Kapral and K. Showalter (Kluwer Academic, Linear Algebra(Academic Press, New York, 1974).] For
Dordrecht, 1993); (c) for a review, see R. Kapral, Physica ¥ € R?, by the Poincare-Bendixon theorem, these would
(Amsterdam)36D, 49 (1995). be the typical attractors expected. The experimental
[3] A. Belmonte and J.-M. Flesselles, Phys. Rev. Léft, results of Ref. [5] show both fixed point and limit cycle
1174 (1996). attractors. Forv € T? (as in the case of periodic
[4] A.J. Durston, Dev. Biol37, 225 (1974). boundary conditions used for the computation in Fig. 1),
[5] N. Nishiyama, Phys. Rev. B7, 4622 (1998). quasiperiodic motion might also, in principle, be possible.
[6] (@) M.C. Cross and P. Hohenberg, Rev. Mod. Phys. With temporally periodic modulation of, Eq. (9) could
65, 851 (1993); (b) Y. KuramotoChemical Oscillations, also give chaotic vortex motion.
Waves, and TurbulencgSpringer-Verlag, New York, [18] I.V. Biktasheva, Y.E. Elkin, and V.N. Biktashev, Phys.
1984). Rev. E57, 2656 (1998); the authors relate the velocity
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