Exact Treatment of the Dispersion and Beam Interaction | mpedance of a
Thin Tape Helix Surrounded by a Radially Stratified Dielectric

D. Chernin
Science Applications International Corporation
McLean, VA 22102

T.M. Antonsen, Jr.
Institute for Plasma Research
University of Maryland
College Park, MD 20742

B. Levush
Naval Research Laboratory
Washington, DC 20875

November 23, 1998

Abstract

An exact dispersion relation is obtained for electromagnetic waves propagating on a thin metallic
tape helix of arbitrary width, supported by a radially stratified dielectric layer and enclosed by a
metallic shell. By expanding the surface currents on the tape in a series of Chebyshev
polynomials, the unquantifiable assumptions made in al previously published analyses of the tape
helix regarding the forms of the surface current on the tape, or the electric fields at the radius of
the tape, are avoided. The power flow and interaction impedance are exactly computed. The
dispersion relation is solved numerically for slow waves and the resulting phase velocity and
interaction impedance are compared to those computed using the frequently made assumptions of
constant current along the tape and zero current across the tape. It is found that for wide tapes
significant errors are made in both the phase velocity and interaction impedance when neglecting
the transverse variation of the longitudina current and neglecting the transverse current. For
narrow tapes, the two approaches agree to good accuracy. Plots of the surface currents for wide
and narrow tapes are presented. The longitudinal current shows a significant variation across the
tape. An example is given showing the existence of an optimum tape width, at which the on-axis
interaction impedance is maximized. It is separately shown how an approximate, but useful model
of metallic vanes may be incorporated in the analysis by the modification of certain boundary
conditions. In al cases, computations of phase velocity and impedance across a wide frequency
band take well under a minute on a modern workstation.



1. Introduction

The characterization of the electromagnetic waves supported by a metallic helix has been the

subject of extensive investigations, beginning, apparently, with an approximate treatment by
Pocklington', who analyzed waves supported by a thin wire helix. It was not until the invention

of the helix traveling wave tube by Kompfner?, however, and its subsequent analysis by Pierce®,

that interest in the details of the slow wave electromagnetic modes of a helix greatly increased.

The first comprehensive analytical treatment of the problem was presented by Sensiper in his
doctoral thesis’, some of which was abstracted in a later review article®’, where many references

up to 1955 may be found. Sensiper discussed both the so-called sheath model of the helix, in

which currents are constrained to flow in helical paths on a cylindrical wall, as well as a finite

width tape model, which contains the effects of spatial harmonics absent from the sheath model.

In both cases, Sensiper’s analysis applies to an unsupported helix in free space. The effects of a
supporting dielectric layer were investigated by Tiend by McMurtry, who also considered the
effect of a surrounding metal tube. A good summary appears in Watkilise recently, Freund,

et. al’ computed the dispersive properties of a tape helix surrounded by a cylindrical metal
waveguide in connection with their analysis of the linearized beam-circuit interaction in a TWT.
Ghosh, et. a presented an analysis of the tape helix surrounded by a stratified, multi-layer

dielectric support.

All previous work on the tape helix of which the present authors are aware have included some
simplifying assumptions about the surface current density distribution on the tape and/or have
enforced the boundary conditions on the electric field at the tape in an approximate way. The
‘narrow tape’ assumptions seem to be the most common. These are that (1) the current flows
only along, not across, the tape, (2) the current density along the tape is constant across the width
of the tape, and (3),&E 0 along the tape centerline. Sometimes assumption (3) is replaced by the
condition that the average of &cross the tape vanishes, though this gives results very similar to

(3), for narrow tapes. Sensiper, apparently uniquely, separately treated the wide tape (narrow
gap) case, by assuming thgtvanished everywhere at the radius of the tape, the electric field in

the gap was constant, and the transverse current at the center of the gap vanished, though, again,

his analysis applied only to an unsupported helix in free space.



Freund, et. a. and Ghosh, et. a. in particular applied (1), (2), and (3). These approximations are
expected to be good for narrow tapes. However, they are not essential, nor are they necessarily
physically reasonable. In particular, assumption (2) omits the expected square root singularity of
the paralel current density at the tape edges, present even for narrow tapes. In the present report
it is shown how these common assumptions may be eliminated and a formally exact dispersion
relation obtained for the (infinitely radially thin) metal tape helix supported by a radially stratified
dielectric layer, surrounded by a cylindrical metal waveguide. An exact expression for the power

flow, from which the interaction impedance may be obtained, is also given.

The assumption of an infinitely thin tape presents a question of how the predictions of the theory
presented here could be compared with experimental measurements on real, finite thickness tapes.
In the usual case, in which the skin depth is small compared to the actual tape thickness, dightly
different currents flow on the inner and outer surfaces of the tape. This could be taken
approximately into account, for example, by treating two helical surface currents separated by a
vacuum gap representing the tape thickness, but no attempt to do this is made in the present
paper. Here we present the first exact treatment of a single thin tape. Generalizations of the

analysis used here to treat multiple tapes, even counter-wound tapes, are straightforward.

This paper is organized as follows: Section 2, below, presents the derivation of the dispersion
relation and power flow for the case of a single dielectric layer between the helix and the outer
wall. The formulation is such that it is easily generalized to the case of an arbitrary number of
dielectric layers; this is done in Section 3, where a simple matrix approach is used to propagate
the fields across the multiple layers. Section 4 presents some numerical examples, demonstrating
the breakdown of the narrow tape assumptions. It is also shown that there is a maximum in the
interaction impedance as a function of tape width, the maximum occurring at a value at which

neither the narrow tape nor narrow gap assumptions is expected to be valid.
2. Single Dielectric Supporting Layer

We begin by considering electromagnetic waves supported by a tape helix centered inside a
perfectly conducting circular cylinder with a single azimuthally uniform dielectric lining, as shown
in Figure 1. The radius of the helix is a, its width is w and its period or pitch in the axial (2)
direction is p. The tape is taken to be infinitely thin in the radial direction. The radius of the



enclosing cylinder is b. The pitch angle of the helix, ¢, is defined by coty=2ra/p. Cylindrica

coordinates (r,6,2) are used, as shown in the figure.

The interior of the helix (Osr<a; region 1) is taken to be vacuum. The region between the helix

and the outer wall (a<r<b; region 2) isfilled uniformly with a single layer of dielectric material of
permittivity £2 = {2 ¢, where &, is the permittivity of free space. Superscripts ® and @ are
used here and below to denote regions 1 and 2. The general case in which the dielectric region

between the helix and outer wall is radially stratified into multiple layers with different dielectric

constants is treated in the next section.

Dielectric region

kMetal wall

@

w/cos )
(b)

Figure 1. Right-handed tape helix surrounded by a single diglectric layer enclosed in a
cylindrical metal waveguide. The helix radius is a, its width is w, and its pitch is p. The
waveguide radius is b. The developed helix (cut along z and unrolled) is shown in (b). The tape
cuts a plane of constant zin awidth w/sing as shown in (b), where coty=2ra/p.



To begin, we need only Faraday's and Ampere’s laws whighksrunits, are:
OxE=-jaB (1)
OxH=jaD+J (2)
where B = u,H; D=¢E and a time dependeneexp(jai) has been assumed. The currdiig

confined to the (infinitely thin) tape and to the wall of the enclosing cylinderr<fHpmwe write
J(r,8,2) = 3(r —a)[J, (0, 2)6 + J,(6,2)2] 3
where J(8, ) isthe surface current density at r = a, and &r-a) is the Dirac delta function.

We take all field and current components to be of the (“Floquet”) form,

F(r,0,2) = g Ik i Fn(r)ejn(e—kHz) @

n=—c

whereky=277p. The helix period is positive for a right-handed helix and negative for a left-
handed helix. Bp is the phase shift per period. The propagation fa6tsran as yet unknown

function of frequencyw, and the other parameters of the problem.

Now, it follows from Eqgs.(1) and (2) th&t, andH,, separately satisfy

Tl 2+ HFO =0 5
Taa "+ )@zn (5)
in each regioni€1,2), where F" denotes eitheE" or HY

2

N2 — i W
vt =B -e (6)
c
Is the square of the radial propagation factor in re@iioand

B, = B +nk, (7)

Is the axial propagation factor in all regions.

Equations (1) and (2) may also be used to express #me 8- components of the fields in terms

of thez-components and their radial derivatives as follows:
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1E = 1B, 2B - HY (63

i i -n n i - 0 i

yirD =~ g _ gy, 9 o (&)
r or

YOO = s("w EO + J,B H 0 (8c)

PHY = jeVw 20 - g Y

where, again, these equations hold separately in regions 1 and 2.

The goal of the calculation that follows is to express the components of E paralel to the helix in
terms of the helix surface currents. Requiring those components of E to vanish on the (perfectly
conducting) helix surface will then give a homogeneous equation for the components of the
surface currents. The condition for existence of a non-trivial solution of that equation gives the
dispersion relation, relating the propagation constant 3 to w (and to the other parameters of the

problem). The resulting currents can then be used to compute all field components.

Equations (2) and (3) give the jump conditions on H , at the helix (r=a):

H@ (@) -H{ (@) =-Ia (99)
H gﬁ) (@) -H g]) @) = Jyn. (9b)

Evaluating Egs. (8b, d) at r=a, defining the dimensionless logarithmic derivatives

. 1 o0eY

En yr(:)Eg]) ar r-a ( )
, 0
v 1 _OHa (10b)

Hn V,(]i)Hg,) or "2

and solving for H)and H® interms of E{and E{) gives

() ()
i pdgian: @



where 2x2 admittance matrices Y.") have been defined as

2 2
N
o_ —1B.Cc 0O yya c” B, U 2
Yo' = 7 y(i)l(i)aaD y(i)za 1 (12)
o/n "Hn D_ n -n |:|
o B 0

where ¢, = u,c = 377Q isthe impedance of free space.

The logarithmic derivatives defined in Egs. (10a, b) and appearing in Eq. (12) are given by the

solutions of Eq.(5). Theinterior of the helix (Region 1) is assumed to be vacuum. It follows that

17 (x®)
D —1@ = n\"n
IEn - IHn - |n(X,(]l)) (13)

where I, is the modified Bessel function of the first kind, x¥ = ya, ais the helix radius, and a
prime mark denotes differentiation with respect to the argument of the modified Bessel function.
Similarly, applying Eq.(5) in Region 2 and enforcing the appropriate boundary conditions at the

outer wall gives

1 (y(2) (2)y _ (2) 11 (2)
(2 — In(Xn )Kn(yn ) In(yn )Kn(xn ) (14a)

T L) K () = T () Ko (67)

@ 2 1O K (U2) = 1 () K () 140)
LK) ) K, O6P)

where x!? = y@a, y@ =@ pisthewall radius, and K, is the modified Bessel function of the

n

second kind.

Defining now the jump in the magnetic field AH = H®(a) -H®(a) at the helix radius, Egs.

(9a,b) and (11) give
Sobe

where the superscripts on E,, and E,, have been dropped, since these fields are continuous at r

= a. Solving for E,, and E,, interms of the surface currents on the helix gives the basic result
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J
e o
zn ‘J6h
where the 2x2 impedance matrix Z,, has been defined as

z, =y -y®)*. (17)

Thetotal E field at the tape radius (r=a) is then

1 2 ) ' .J
'HO,2)=—5 Z [dae"¢E HE', 7). 18
%@ A= g 250 [O6C T HE D 19

In order to apply the boundary conditions Eg=E,=0 on the tape itsdlf, it is convenient to define

surface coordinates on the cylinder r=a as
¢ =adcosy + zsny (19a)
n = -a@dsiny + zcosy (19b)
where the helix pitch angle ¢ is defined by
coty =kya. (20)

The limiting cases (k, - 0, ¢ - M2, § -z n- -af)and (ky, - oo, ¢ - 0, - ab, n- 2
correspond to a strip along z and a very tightly wound helix, respectively. Inthe general case, the
¢&- direction is measured along the tape (-co< é< ) and the n- direction is measured across the

tape (0<n<w) where w is the tape width. For any vector (V,,V,), the transformation to (¢, 77)

coordinates is given by arotation

i

which defines the rotation matrix R. Performing this change of variablesin Eq. (18) yields

é — 1 ~ 1 —in(n-n')lasin 4 ot '
%%m)—mzzn[dne & "”qu%&cotw(n mna) (@

where



e, i

The boundary condition at the tapeis E;(¢,77) = E,(&,77) =0 for -e<{<coand O<n<w. In order

to apply this boundary condition, it is convenient to take a Fourier transformin & Writing

F(&.n) =e"F () (24)

for any F, where « is the wave number in the -direction, EQ. (22) becomes

O
w e e
e_ij %{K % e—j;(({-;.,]cotw) l z e_jnq/asmwj_dﬂ'elﬂ Eajismw"'l(co l//DZn %{K E (25)
K 2msny 4 ) -~

Noting that

&+ncoty = ﬁ (264)
- a:nw =9-kyz (26b)

it follows that Eq. (25) has the form of Eq. (4) if we identify

K =Bsiny (27)

as the wavenumber along the tape. It remains then only to satisfy the condition

%““Ezom o<n<w. (28)
nK

Using Eq. (25), this condition is written

(S) (W/Z) -ja,(s-8) > (S') _
EZ(SDE zfrasmwZI T =)

in-1< s< 1 where

an

? + 0 cost— w(nn+ cos Y), (30)

W = w/(pcosy) (31)
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Is the dimensionless tape width (0<w <1), ¢ = fpis the phase shift per period, and we have

changed variablesfrom 77 to s,

s=21-1 (32)
W

so that the range of sis [-1,1] across the tape. Note that s = +1 is the downstream edge of the
tape, that is, a point moving with the phase velocity of the wave passes s = -1 firgt, thens= +1.
The subscript « has been dropped in Eq. (29), and in the following.

Eq. (29) is a homogeneous integral equation for the functions J;(s) and J,(s). The condition

for the existence of a non-trivial solution of EQ. (29) is the dispersion relation we seek. One

approach to obtaining this dispersion relation is to expand J;(s) and J,(s) in a complete set of

functions on the interval (-1,1) and to project out the coefficients of each element of the set from
Eq. (29), setting each to zero. The result is a homogeneous matrix equation. Setting the
determinant of the coefficient matrix to zero gives the dispersion relation. Following this

approach, we write

Ji(s) = " z T (9) (33a)

(9 = 1-5)25 J,U,(9 (330)

where T (s) and U, (s) are the Chebyshev polynomials of the first and second kinds" and the

expansions have been chosen so that the currents have the expected behavior at the edges of the

tape, s=+1. Useful integrals involving the Chebyshev polynomials are

D Ol#m 0O

Id T(S)Tf,‘?_ 7 1=m=00 (344)
HIT/Z l=mz0H

Ids(l )20, (U () = O 0/2 l'fm (34b)
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Idse'”s—( Tisillz = 7Tj|J|(0')

p jas 2\1/2 g1 +1
Idse A=-s)"U(s) =] TJH(G)
=]

where, in (34c, d), J, isthe Bessel function of the first kind.
Substituting (33a, b) in (29) and operating by the matrix operator

T.(9

[J’d 1-s )1/2
:

0 }ds(l— s)"?U, (s)

(I A

gives

S

(340)

(34d)

(35

(36)

where a sum from 0 - on |' is understood and the doubly infinite set of 2x2 matricesm ;- ,

(1, 1"=0,1,2,...0) isgiven by

”_( l)IJI+IzB](n)|+1 I+l %B](a)|+l H

n= —oo
n

If we expand Eq.(34)

Heof]
HMOO Moy Mg, ... no L
OMyo My My, ... [=dq SE MJI=0

DMzo My M, ... m U

The complete dispersion relation is then

detM=0

11

I' +1(a )D

n

(37)

(38)

(39)



where Mis the infinite matrix in Eq. (38).

Eqg. (39) is (formally) exact. Its solution includes al waves (both fast and slow) that can be
supported by the helix. The only implicit assumption is that the currents possess convergent

expansions of the form (33a,b).

Note that the elements of M defined in (37), depend on those of the admittance matrices in region
(1) -- the interior of the helix -- and region (2) -- the dielectric layer adjacent to the exterior of the
helix. See Egs. (12), (17), and (23).

As a practical matter, the determinant in Eg. (39) must be truncated. The hope is that
convergence is fast and that only a few terms are needed for good accuracy; this hope is realized
below, in Section 4 where approximate roots of Eq.(39) are found numerically. Even the lowest
order expansion (using a single Chebyshev polynomial in the expansions) can give good results; in
this case the dispersion relation becomes

detMpo=0 (40)

where

@) O @) 0
M“‘nzzﬁjo Jl(an)/an%”gjo Jl(an)/anE D

In this case, the roots of a2x2 determinant must be found.

To compare this result with previous work, consider the commonly made assumptions
J; (8) = constant (independent of s), (429)
J,(s)=0. (42b)
Inthis case it is straightforward to show, from Eq.(29) that

(w/2)J;
msny

E,~

_gsSNa, =
Ze ja,s n ngl,l) (43)
n a

n

where ngl*l) is the (1,1) element of Zn. A further approximation is commonly made in one of

two ways. Either

12



E;(s=0)=0 (E, vanisheson tapecenterline), (449)

1
or I dsE; (s) =0 (Averagevalueof E, vanishes). (44b)
-1

In these cases, using Eq.(43), the dispersion relation becomes

z in an = (1) =0 (45)
n an "

where M=1 for (44a), M=2 for (44b). Generally the choice of (44a) or (44b) makes very little
difference to the computed values of phase velocity. Numerical solutions to Eq.(39), and
comparisons with the solutions of (45) are given in Section 4. First the corresponding expression

for the interaction impedance is derived.

Once (approximate) roots of Eq. (39) are found, these are used in Eqg. (38) to find the current J.
Once J; and J, are determined, the electric and magnetic fields then follow from Egs. (29) and

(11), after using Eq.(21) (inverted) to change back to (6,2) coordinates, from (&,77). Finaly, once
the fields are known, the interaction impedance for the n-th spatial harmonic at radius r may be

computed fromits definition,

@ 2
K, (r) Ew (46)
2B.R
where P, is the power flowing along the helix. P is given by the real part of
. . o b
P=3[ExH*da=7} [rdr(E,Hg ~EgHp)
n=-w(
(47)

o hiE 24
:71&)50Z,anfrdryn"‘ggr 5 Eal i

Em|2]+55h§—er|2 +0 Hzn|2]E
[ . . [
a0 le e oEH,)-22 (61, B

where the surface integral has been evaluated over a plane normal to the z-axis and we have used

Egs. (8a-d) to express al transverse field components in terms of axial components.

Theintegralsin Eq. (47) may all be carried out explicitly by using the indefinite integral

13



Jx'x'mﬁ(x')dx' = % [(x2 +n?)02(x) - x22(%)] (48)

where [}(X) is any linear combination of the modified Bessel functions I,(X) and Kn(X). The result
for the power flowing in the "™ spatial harmonic, in region (i), i=1,2, is Pn("(a(")— Pn("(a(“l’)

where

/]

PO (1) = ”‘;‘F;f Ve, 2B, 3 o), -y

G2l 2 H =3 ) -

+ jnZO[a") op H —A EmH*m]}

(49)

r Bc
where a® =0,a” =a,a® =b and dl fields in Eq. (49) are obtained from the current
eigenvector J, as described above.
The total power flowing is then just
2

P= i RY (50)

1=1 n=—c0

When metallic vanes are present, an approximate model may be simply implemented; as shown in
the Appendix.
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3. Stratified Dielectric Supporting Layer

When the dielectric layer supporting the helix is stratified, as shown in Figure 2, the analysis
following Eq. (15), up to and including the dispersion relation, Eq. (39), continues to hold if the
admittance matrix of Eq. (12) is redefined, as shown below.

VG

Melal wall
Figure 2: Tape helix supported by a stratified dielectric

The stratified case is important because it facilitates the analysis of arbitrarily shaped rods, as
illustrated in Figure 3. It has been shown by Kory*? and by Jain and Basu™ that multiple
azimuthally symmetric layers will represent different rod shapes to good accuracy if the values of

the smoothed dielectric constants are assigned using areaweighting, i.e.

A

£ =1+(e -] ;
A+ A

(51)

in the case of Figure 3, where & and A are the relative permittivity and cross sectional area of the
rods respectively within the indicated annular layer, and 3(A+ A) = Ais the cross sectional area
of the smoothed layer in this case. See Figure 3.
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Figure 3: Use of multiple symmetric layers to represent arbitrary rod shapeis reasonably accurate
when the value of the smoothed dielectric constant is assigned according to Eg. (51).

We proceed to consider the case of N radial regions, as shown in Figure 4. Region 1 is, as before,
the interior of the helix, assumed to be vacuum. Region 2 isthe first dielectric layer outside the
helix. Region N isthe outermost dielectric layer, adjacent to the metal wall. Therelative

permittivity of region (i) isdenoted £ ; r =a® = a isthe helix radius, r = a® isthe outer

r 1

boundary of region (i), and r =a™ =b isthe radius of the outer wall.

Iorigin ( hlelix wall

) @ | (©) | I I N |

0 a¥ =a a? a® .. a® aV®d g =p

Figure 4. N region problem. Region 1 is the interior of the helix. Regions 2, 3, ... N are
dielectric supporting layers. The outer boundary of region (i)risa.

The analysis begins by noting that application of the continuity conditions on the parallel
componentsof Eand H at the interface between two dielectric layers will generally couple the

parallel Eand H fields. We therefore anticipate in particular the existence of relations of the

form
0 —i) _ (i)[(i) 0 M (i)]
a_rEzn _yn IEEn Ezn +Zo|EHnJHzn (52&)
.0 i) (i)[ A0 =) L0 (i)]
Ja_ern _yn Zo IHEnEzrn +|HHnJHzn (52b)
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at r =a® =a for regions 1 and 2 (i=1,2, adjacent to the helix), where the coefficients

182,18, 185, and 1), are to be determined from the field equations and boundary conditions at
the outer metallic wall. Equations (52a,b) are generalizations of Eqs (10a,b). Substituting (52a,b)
in Egs. (8b,d) and solving for Hg, and H 4, intermsof Eg, and E,, again gives arelation of

the form Eq. (11) above, where the admittance matrix is now given by

Y(i)_ Jﬂc
" e,
weW g (I) (i) ()
n I na I wna I Iw a I I
e SRR, e R0 R -0 21, 59
0 B y%a B B.c c?
B _ yr(]l)Za " wy,(:)a | O D
HEnN
O B Bic O

It remains only to specify valuesfor I& 18 1% and1). inregions 1 and 2, for usein Eq. (53).
In region 1 there is no coupling between the E and H fields; the coefficients therefore are the same

asfor the single layer case, i.e.

1 1
12, =18, (544)
18, =15k, =0, (54b)
=10 (540)

where | £ (1) dly (1) are givenin Eq.(13).

To calculate the coefficients | |(52E)n , €tc. inregion 2, the basic idea is to use the field equations to

“propagate” thee; andH; fields from the helix surface, through the dielectric layers, to the outer

wall where the boundary conditions are applied.

Using solutions of Eq. (5), it is straightforward to show that within a layer (regiosay), thee,

field at r, is related to thé&; field at r, by
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EJ(r,) [
Eyé"‘l 2EY (rz)E'

HI LK)+ 11O (x D) 1 (x xf.'f; |, xf,z;% EO(r,) E
nn(xsg)Kn(xs;)+In(xs;)Kn(xf:;) ¥ x®)-1, xO)HO" 2 EO (1)

- “”EA" (r;)(rl)E o

where x® = yUr,, x9 = y%r, , and where we have defined the propagation matrix U {(r,|r,) for

n

(I) (I)

K,
Kn

K,
Kn

(i)
an

(.) (.)
Xn2 an

region (i).
Since H (r) satisfies the same equation (Eq. (5)) as E Its propagation matrix in region (i) is

aso U (r,r,). Defining then the 4-component vector

7 EYm

Dyr(1l) o E(I)(r) 0

V(i) 56
(r)= B 0(r) (56)
B/nl J or Hgn)(r)H
we therefore have
V() =W (v (r) (57)

where W (r,|r,) isthe 4x4 matrix,

(i)
(i) _U () O
W, (r|ry) = %J 0 Urgi)(r2|r1) E (58)

Next we evaluate the jump conditions across a boundary separating two regions, say regions (i)
and (i+1). Refer to Figure5.

| region (i) region (i+1) |
! T

i-1)

al afi) a® aii) al

Figure5: Radial regions (i) and (i+1) and their common boundary at r = a® .
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Denote by a® the location adjacent to a® just inside region (i). Similarly, denote by a!" the
location adjacent to a®, just inside region (i+1). Then using Eq. (8b) and Eq. (8d) and enforcing
continuity of Eg, and Hg,, it follows that

V@) =T, @ [0, @) 9
where
0
E PORIVCE _ H
0 0 (ir+l) n(i) Fn(l) 0 B
[ iy = & n

T.@ M= d o O (60)

0 _ (i+) ]

FUROZE 0 o Ko

0 Voo O

, (i) _ o(i+)

Fn(') ={, «nb, (i+1§L h (6D

a(i)C yn yr(]i)2 Er(i+1)
We now have all the ingredients needed to propagate the vector V, fromthe helix at r =a = a®

totheouter wall, at r =b=a™:

VN (b) =W, (bfa, ) [T, @M a™)... T, (” [a”)W, (a?[a)V,? (a) )
= S(bja)v.? (a),
which defines the 4x4 matrix S(b|a) that propagates the vector V, from the helix to the outer
wall. Itisclear that S(bja) may be simply constructed numerically in any specific case by
performing the matrix multiplications indicated in Eq. (62).
The boundary conditions at r=b are
Exn(b) =0 (639)
#B,(b)=0 (63b)

which means that the first and fourth elements of V" (b) in Eq. (63) vanish. Writing out the first

and fourth rows of (62) yields
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SLEQ + S,y P LER +S,HP? +5,yP 2 HP =0 (642)
SuE? + S,y @  LER + S jHP + 5,2 [ 2HP =0 (64b)

Solving these equations for 2 E? and 2 H? interms of E) and H? then gives relations of

precisely the form (52a,b) where

1, == (5.8~ 5,8 (653
6= 5 5 (S~ 8uS0) (65
12, =42 (-5,8,+ S,50) (650)
8 = = (-5, + 5.5,) (650

and D=S,S, -S,S,,. Useof these valuesin the admittance matrix of Eq. (53) will lead to the

correct dispersion relation for a helix supported by the stratified dielectric layer of Figure 4.

The interaction impedance for the multi-layer case may be computed from the power flow, as
defined in Eq.(46). The power flowing in region (i) in spatial harmonic n is still given by Eq.(49).

Thetotal power is given by Eq.(50), where the sum on regions (i) is now extended from 1 to N.
4. Numerical Resultsand Discussion

A FORTRAN function dt ape has been written to evaluate det Min Eq. (39) for specified values
of w, B, and other parameters. The matrix M is truncated at a user-specified value of the
maximum order (Ima)of Chebyshev polynomial to be used in the expansions of the currents,
Eq.(33a,b). Each matrix element is evaluated by including terms up to a user-specified maximum
spatial harmonic number™ (1) in Eq. (37). dt ape also evaluates, for special values of one of
its arguments, the approximate dispersion function on the left hand side of Eq.(45), if needed for

comparison purposes, this feature has been used in preparing the comparison plots, below.

A FORTRAN subroutine kt ape has also been written to compute the interaction impedance
(46), using the approach described in Section 2.
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Finally, aFORTRAN program, dr oot , has been written to find aroot of dt ape using Newton’s

method, and to calit ape™.

As an example, we consider a tape helix supported by a single dielectric layer with parameters

shown in Table 1.

Table 1
Tape helix parameters used in examples

Parameter Value
Taperadius (a) 0.1245 cm
Pitch (p) 0.0801 cm

Helix pitch angle (¢) 5.85°
Wall radius (b) 0.2794 cm

Didectric constant of 1.25

supporting layer (Er(z) )

Two different tape widths, one narrow (= 0.2) and one wide {f = 0.8), are used to make the
phase velocity and impedance vs. frequency plots shown below. Two different approximations
are used to produce the results shown in each plot. The@é taomcated Chebyshev expansion

of the currents, withl__, =4andn_, =24, and (Il) constant longitudinal helix current, zero
transverse current, and longitudiak O on tape centerline [Re: EQ.(45), w1 andny., =

24]. (The use of Eq.(45) witM=2 produced plots in all cases indistinguishable from those using
M=1.) In all cases24 spatial harmonics are retained in the sums; though this may seem
excessive, we find this to be required to obtain reasonably good representations of the tape

currents (See Figures 7 and 9, below). Usd gf=2andn_, =12 gives results for phase

velocity and impedance (but not currents!) that agree to three or four digits with those obtained

using the higher order expansions. Wi, =4andn_, =24, the computation of phase

velocity and impedance at 51 equally spaced frequencies takes about 24 seconds on an HP-

9000/780 workstation; all computations are done in double precision.

Figures 6a and 6b show, respectively, the phase velocity and (on-axis) interaction impedance as

functions of frequency for a narrow tape, with normalized tape vw‘@iﬁhw/(pcosw) =0.2.
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The plots show that, as expected for a narrow tape, there is a very small error made using
Approximation (11).

Figure 7 shows the longitudina ( J;(s)) and transverse ( J,(s)) surface currents on the tape for

this case. The transverse current is extremely small, as expected, and the longitudinal current is

quite flat across the tape, except very near the edge singularities.

In Figures 8ab the phase velocity and impedance plots are shown for a wide tape, with a
normalized tape width of 0.8. Here we see that the use of the Chebyshev expansion makes a
significant difference, both to the phase velocity and to the interaction impedance, when compared
to the values obtained using the assumption of a constant longitudinal current and zero transverse
current on the tape. Figure 9 shows the helix surface currents in this case. Note that while the
transverse current is still small, it is much larger (relative to the longitudinal current) than that in
Figure 7. The longitudinal current shows a large variation across the tape in this case, and is

highly asymmetric about the tape centerline.
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Figure 6ac Phase velocity vs. frequency for a narrow tape helix with the parameters of Table 1
and w/pcosy = 0.2 as computed using (1) the Chebyshev expansion with (/ =4 Nmax=24)
[solid ling], and (2) the assumptions that the longitudinal current on the tape is constant, the
transverse current is zero, and the parallel eectric field along the helix centerline vanishes (Eq.
(45), M=1; Nma=24) [dashed ling].
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Figure 6b: On-axis interaction impedance vs. frequency for a narrow tape helix with the
parameters of Table 1 and w/pcosy = 0.2 as computed using (1) the Chebyshev expansion with
(I max=4; Nmax=24) [solid lin€], and (2) the assumptions that the longitudinal current on the tape
is constant, the transverse current is zero, and the parallel eectric field along the helix centerline
vanishes (Eq. (45), M=1; Nya,=24) [dashed lin€].
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Figure 7: Longitudinal and transverse currents vs. s for a narrow tape helix with the parameters
of Table 1 and w/pcosy = 0.2 as computed using the Chebyshev expansion with (/ =4,

Nimax=24). The units have been fixed by setting J;, = 1in Eq.(33).
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Figure 8a: Phase velocity vs. frequency for a wide tape helix with the parameters of Table 1 and
w/pcosy = 0.8 as computed using (1) the Chebyshev expansion with (/ =4 Nmax=24) [solid
ling], and (2) the assumptions that the longitudinal current on the tape is constant, the transverse
current is zero, and the paralld eectric field along the helix centerline vanishes (Eg. (45), M=1;
Nmax=24) [dashed ling].
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Figure 8b: On-axis interaction impedance vs. frequency for a wide tape helix with the parameters
of Table 1 and w/pcosy = 0.8 as computed using (1) the Chebyshev expansion with (/ =4,
Nmax=24) [solid ling], and (2) the assumptions that the longitudinal current on the tape is
constant, the transverse current is zero, and the parallel eectric field along the helix centerline
vanishes (Eq. (45), M=1; Nya,=24) [dashed ling].

24



-0.01

Jé I -0.02

n -0.03

-0.04

' -0.05

Figure 9: Longitudinal and transverse currents vs. s for a wide tape helix with the parameters of
Table 1 and w/pcosy = 0.8 as computed using the Chebyshev expansion with (/ max=4; Nmax=24).
The units have been fixed by setting J;, =1in Eq.(33a). Note the x10 scale on the right,

compared to Figure 7.
If the interaction impedance (computed using the truncated Chebyshev expansion) is plotted

versus normalized tape width, W, for various frequencies, it is found that an optimum width
exists, at which the impedance is maximized. An example is shown in Figure 10. Note that the
maxima occur in this case near values of normalized tape width where neither the narrow tape nor
narrow gap approximations would be expected to be accurate. The width at which the maximum
impedance occurs increases as frequency decreases; the maxima are found to occur at awidth that

minimizes the phase velocity.
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Figure 10: On-axis interaction impedance vs. normalized tape width for f = 2.44, 4.06, and 5.86
GHz, for a hdix with the parameters of Table 1.
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Appendix
I ncor por ation of a Simple M odel of Vanes

Thin metal strips or wedges called vanes are sometimes used in helix TWT’s to reduce circuit

dispersion. The vanes are located adjacent to the dielectric support rods as shown in Figure A-1.

Outer i_ I .I

Metallic
Wall
Tape Helix
Vane
’: Dielectric
s Support Rod

Figure A-1: Schematic of helix TWT cross-section, showing locations of metallic vanes.

Vanes tend to short out tHe, field while having little effect orEy or H,. A simple model of

the vanes has been published by Freund, &t. ileffectively assumes that an infinite number of

infinitely thin radial vanes are present. This model may be implemented by setting
E,(r,)=0 (A-1)
wherer, is the radius of the vane tips, and
Ep(b) =0 (A-2)

as before. These boundary conditions are easily incorporated into the calculation of the main text,
by replacingy® in Eq.(14a) byy®r, and by the appropriate changes in the ujipitrof
integration in Eq.(47). Note that this is onlyapproximate model of the vanes. The dispersion

and impedance calculations presented in the text, howevexaatevhen no vanes are present.

An example of the effects of vanes is illustrated in Figures A-2a and A-2b where the phase

velocity and interaction impedance, respectively, are plotted versus frequency for a case with and
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without vanes. Note the large reduction of dispersion comes with a cost in interaction impedance,

due to the reduced value of E,.
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Figure A-2a: Phase velocity vs. frequency for a helix TWT circuit using the tape heix with the
parameters of Table 1 and w/pcosy = 0.8 as computed using the Chebyshev expansion with
(I mas=4; Nmax=24). with and without vanes. When vanes are present, r, = 0.2019 cm.
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Figure A-2b: On-axis interaction impedance vs. frequency for same parameters as Figure A-2a.
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