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Diamagnetic stabilization of ideal ballooning modes in the edge pedestal
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The stability of the tokamak edge pedestal to ballooning modes is addressed using
three-dimensional simulations of the Braginskii equations and simple analytic models. The effects
of ion diamagnetic drift and the finite radial localization of the pedestal pressure gradient are found
to be strongly stabilizing wheA< 6y, whereé is the pedestal half-width and2~pi2/3R1’3 in the

center of the pedestal. In this limit, conventional ballooning modes within the pedestal region
become stable, and a stability condition is obtained in the two fluid systém<(4/3)6r/6
(stable which is much less stringent than that predicted by local magnetohydrodyriithiD)

theory (a/a.<1). Givena~q?Rp/ 4, this condition implies a stability limit on the pedesjai

B< B, where B.=(4a./39%) 6x/R. This limit is due the onset of an ideal pressure driven
“surface” instability that depends only on the pressure drop across the pedestal. Near marginal
conditions, this mode has a poloidal wavenumlbgr 1/6g, a radial envelope- 5g(> 6), and real
frequencyw~cs/\6gR. © 1999 American Institute of Physid$S1070-664X99)03007-4

I. INTRODUCTION system, represented in Figial by the solid line, is the same
. as that predicted by ideal MHD theoryr(a.=1). Foruv,;

MagnetohydrodynamidMHD) analyses of data from 1 however, the two fluid stability limit increases almost
DIII-D '(Ref. D and other .tokamalfs indicate the steep gradl'Iinearly With{)*i , exceeding the ideal MHD limit by about a
ent region of arH-mode(high confinement modeedge ped- N _ oA .
estal may well exceed the first ideal stability boundary forfa(,:tOr _Of 2 wher, i~ 1. Since the condition, ;=1 is sat-
ballooning modes. Recent efforts to resolve this apparent didSfied in theH-mode pedestal of many present day tokamak
crepancy have focused on the stabilizing effects of the edg@ischargesin DIII-D, * for example, we obtain, ;~2 given
bootstrap currentWe propose here an alternate explanation,0~4p;~0.00R) this may explain the apparent ability of
based on three-dimensional simulations of the Braginskipedestal gradient in some experiments to exceed the ideal
equations and the study of some simple analytic models. Whmit.
find a substantial enhancement of ballooning mode stability In the regime{)*i>1, one would not expect a stability
relative to ideal MHD theory can be explained by a two-fluid limit like that in Fig. 1(a), or any stability limit at all for that
stability analysis that accounts for both ion diamagnetic efmatter, to arise from conventional ballooning modes, i.e.,
fects and the strong radial localization of the edge pedestdjallooning modes that are radially localized within the ped-
pressure gradient. Our results suggest these effects, at typiaadtal region. As shown below, this is because such localized
H-mode parameters, can allow ideal ballooning modes of allnodes necessarily have short poloidal wavelengtfié=1,
wavelengths to remain stable even well above the first ideadnd thus have typical diamagnetic frequenaigs=V, /&
MHD stability limit. Long wavelength modes witky6<1  ihat in the regime, ;> 1, always exceed the largest possible
(6 being the pedestal half-widthemain stable because the p5j150ning mode growth rate obtainable from local MHD
radial _Iocallzatlon of the pedgstal gradient gr'efeltly Wea‘fe”?heory, Ve~ Vb Similarly, assuming the poloiddEx B
the drive of such modes relative to the stabilizing contribu-,,4 diamagnetic flows balarfcgg~V, ; (a result consistent

tion of magnetic line-bending. Shorter wavelength modesyi, the simulations discussed latethe typicalE X B shear-
with k,6=1, on the other hand, are strongly stabilized by th(—:~Ing rate in the pedestate~VL~V, /5 also exceeds
E *1 max

competitive contributions ofw,; and EXB shear effects. . ~ . . . .
The key parameter that determines the importance of norg'venv*‘>1' Consistent with th'S: the modes leading to the
stability boundary in Fig. @ for v, ;>1 are not localized

ideal effects is the normalized ion diamagnetic velocity . . :

—V../ _ 2 modes, i.e., they have poloidal wavelengths and radial enve-
=V, (ybé)! where V*i_pchi/Lp- and Yo A .
—[263/(L.R)]¥2 (with c2=P/p) are the Iolcal values of the lopes that are larger than the pedestal width. Unlike conven-
. [ UL .S p , T tional ballooning modes, furthermore, the stability and eigen-
ion diamagnetic velocity and inverse ideal ballooning time atf : . -

- requencies of these long wavelength instabilities are
th? center of the pedestal. Assuming~L, ~ 8, v, canbe  jnsensitive to the details of the pedestal structure, and depend
written as only on the plasma pressure drop across the pedestal. The

A 5o\ 312 T 13 consistency of this with Fig.(&) can be understood from the

Dyi= (3) . Or= (Z(T—JIrT) pZPRYS, (1)  analytic form of the stability boundary that we obtain later in

i e the asymptotic limitv, ;>1 [see Fig. 1a), dotted—dashed
Forv,;<1 (8> dR), the stability boundary of the two fluid line],

1070-664X/99/6(7)/2797/5/$15.00 2797 © 1999 American Institute of Physics



2798 Phys. Plasmas, Vol. 6, No. 7, July 1999 B. N. Rogers and J. F. Drake

Il. MODEL

The simulations are carried out in a poloidally and radi-
ally localized, flux-tube domain that winds around the tdtus.
Assuming a shifted-circle magnetic geometry, the nonlinear

equations for perturbations of the magnetic fiix electric
potential$, densityn, electron and ion temperatur€s, T;,
and parallel flowv are

al g+ ad<1+1.71ne>ay7m—vn[?¢3—ad("be+o.7ﬁe>]=(34)

FIG. 1. (a) Stability boundaries for ideal ballooning modés) Wave num-
bers of marginally stable mode for ramp profile.

V,-dV, (¢+1aqp)+C(p+G)—V =0, (5)

din+dyd—[ €,C(d— agpe) — €,V v+ agen(1+ 1)V |JI]
=0, (6)

stablo. @ 4T+ moyd— Hel(B-adet FragT) -V

With the substitutionre=q?Rp/ 8, the pedestal scale length +agen(1+ V3] 5V (V| Ti+andyh)=0, (7)
& drops out of this condition, leading to thé (ndependent ~ ~ e oA~ ~ 5 = ~
stability condition on the pedestg! for v, ;>1, diTet 7edyd— 5[enC(P— aaPe= agTe) — €, Vv

+1.71agen(1+ 1) V31— 5oV (V| Te+ anedy ) =0,

4ac 6R
dag| T, V3|20 dw == &[V)(p+4G) +(2m) ad,i], ©)
Cc 1 I ~ ~ ~
:_3q2(—2(Ti+Te) (ﬁ) (stablg. 3 where Vj=d,+azxV -V, , d=a+2zxV,$-V,, V2

= (9t A(2)ay)?+3d;, C=(cos(2m2)+A(D)sin(2n2)—€)d,
Physically, the limiting mode in this case is analogous to the+sin(2m2)d,, A(z)=2wsz—asin(2m2), G=2y,[C(¢
|nstqb|llty of a light fluid supporting a hgavy fluid against +1agp;), —4(e, 1) Vo, 3=V2Y, pa=n+T,, p=(pe
gfa‘{'tyz thatb,'?’ thSe Sr:‘arr? bognda[jy limit zf the R‘f"'ﬁ'gh;jt 70,)/(1+ 7). The time(t), perpendicularX,y) and paral-
aylor instability. Such sharp boundary modes, in either t At _ 12
cage of Raleig)rq—Taylor orpballooning;/ modes, can be obeifl2 @ Eogznallz;t/loh S_Cf}lze;Rﬁ_reolﬁ(RLg/? _/gs’ :;30
tained from the analogous dispersion relation for local modes ; mAa(No® 7pshiMiwe;) ) and L,=2maaR,
With
in diffuse profiles by a simple prescription, namely, by re-
placing the inverse profile scale length& J#[p'/p|, 1/Lp
=|P’/P|, etc. by the wave number along the boundary. In psCsto ,_87(Peot Pio)
the ballooning mode case this substitution givgs=y{ “T 1L L, @=0a T B (10
=2cZ/(RL,)— vg with yf=2cZk/R, which is identical to " P
the dispersion relation we obtain later for the unstable mode®ther parameters are=Tio/Teo, 7,=Ln/Lt,, €=alR,
associated with Ed23) if the stabilizing contributions o, ; en=2L,/R, €,=€"%(47qy), &z(Zw)zaLp/Ln, La/Lp
and magnetic line bending are neglected. Similarly, With=[1+ 5 + 7(1+ 7)]/(1+7), ke= 1.60%e,(1+7), «
|P/Pi|—k, one findsw};— (kdg)*¥; . The scale lengtidg =0.064(m, /m;)?720%e (14 7), y,=0.167%q3«;. The
is therefore introduced into the problem through the additiorparallel Cgordinate valuez=0 and Zp: +1/2 represent the
of diamagnetic effects, which cutoff the monotonic increaseyythoard and inboard midplanes, respectively. The trans-
of y \k atk~1/8g, and result in the maximum growth rate verse flux coordinates,y correspond to local radial and po-
Y~ YR 2¢2/(5=R). Finally, these fastest modes are Sztabi'loidal variables. Unless noted otherwise, we consider the val-
I|<zegl by 2the add!tlon of line begldlng effgcts IfyR ues s=1, r=1, €,=0.02, €=0.2, 0.=3, 7,=7.=1,
=Vi/(qR)%, or equivalentlyB=<dr/(q°R), consistent with m, /my=2.
Eq. (3).
. We. first describe the Braginskii model on which OUr S IMULATION RESULTS
simulations are based in Sec. Il. In Sec. Ill, we describe a
simulation of the evolution of the edge pedestal in the con-  The present study extends the investigation of pedestal
text of theL—H (low—high) transition model of Ref. 3. In stability begun in our earlier workso we begin this section
Sec. IV, we describe the two-fluid stability analyses of somewith a brief review of some past results. We argue in Ref. 3
simple analytic models which are qualitatively consistentthat theL—H transition, and thus the formation of the edge
with the behavior of the simulations. In Sec. V, we summa-pedestal, is linked to the dependence of the turbulent edge
rize our main conclusions. transport on the MHD and diamagnetic parameterg, . In

an associated diffusion rallaozLé/to. The diamag-
netic and MHD parameters are
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x/Ly x/Lg FIG. 3. Global mode leading to the pedestal crash.

FIG. 2. Pressurég, solid, Ve, (a, dashed andd Ve, /dx (b, solid profiles.

direction and the other in the, ; direction, resemble the two

dominant linear resistive ballooning modes in our system at

k,=0.4. Thew,; root eventually transitions to the rapidly
rowing instability that destroys the pedestal. The time evo-

the regime of highewy~ 1, small but finite values of lead
to a strong suppression of transport, and as a result, in th

re;)glme ahlocarzl Ilgc_rease in the dplas_ma fprﬁssure grad|en| tion of the poloidally averaged ion heat flux during the
above a threshold Ia, causes ae UC“_O”O the transport. sequence of events prior to the pedestal crash is shown in
In the presence of a fueling source, this reversed dependenﬁag 4. The large initial drop in the fluxt{t,~1100—1300)

of the transport on the gradient makes it impossible for therepresents the transition. After this, coherent mode activity in

system to maintain t_ransport equi_librium, and leads to. &he pedestal leads to weakly growing, rapid oscillations
spontaneous steepening of the profiles above thresholgs 'n(mostly atw~aw, ) for t/ty>1600, followed by a rapid
and a4 that we associate with the—H transition. crash phase aﬂ;i 2300_20350 '

We simulated this transition in Ref. 3 in the context of a

simple F"O‘?'e': The mode! includes a source and ¢rakii- betweenVg.g andV,;, the stabilizing contribution due to
ally periodig in the density Eq(6), intended to represent EXB shear is generally competitive with that of the ion
neutral particle fueling in the edge. In response to the Sourc%iamagnetic drift for globak,~ 1/5 modes. TheE X B shear

. . ; y .
a m(_)dulz_itlon of the density proﬂle_forms th‘fit steepens theyo alone, however, is not sufficient to explain the stability
gradient in the center of the simulation domain. The strengthy . <imulations. since the actugik B shear vanishes in

of the source is chosen_so that fma.~1 and a<1. the the center of the pedestal where the ion-diamagnetic compo-
source produces only a slight steepening of the profile beforﬁent of the flow(and thusVe..5) has a maximum. In the case
the system comes into equilibrium. The MHD parametés -

then slowly increased with time. With increasiaghe trans- v*iwl.’ Wh'Ch. applies to the s!mulatmn just described at
port drops and the source causes the gradient to steepéﬁfer times, this result_s In a region, compar_able to t_he half-
enhancing the turbulence until a new equilibrium is reached\.NIdth of the pedestal, in which tHex B s_hearlng rate Is too
At a critical value of«, the L—H threshold condition is small 1o accognt f_or the ab_sence of ideal modes. This is
crossed and the pressure profile spontaneously begins mqnstratc—;-d mI.F'g.' (Bt)ﬁ Whlcg C?Tp?rle::_s thg Ioc.:{ﬁth
steeper{see Fig. 2a), solid ling]. This steepening leads to shearing ra_g(sol Id)MIIr-]|D ebpl(la estal o '3'( ) wi h et
the formation of a sheared poloid&lX B flow [Fig. 2(a), maximum - idea aliooning mode  growth rate

i . . : . . (dashed
:ﬁfsthed ling which balances the poloidal fon diamagnetic If we attribute the weakly growing modes following the

As was mentioned in Ref. 3, the steepening of the pro_transmon to nonideale.g., resistiveeffects, the behavior of

files following the transition in the simulations is not limited
by the idealh— o stability boundary. This is the case for the .

As noted earlier, given the balance that exists in pedestal

profile in Fig. 2a), which is a plot of the ion pressure profile 0.030 "

roughly 1008, after the transition in a simulation with, 0.025¢

=0.02, a4=1. The a-value at the center of the pedestal, 0.020

a(x=0)=1.6, is well beyond the first stability limit« & 0.015

=0.8 ats=1). Shortly after the time of Fig. 2, however, the 0.010

onset of a rapidly growing global mode wiky=0.4 (poloi- 0.005

dal wavelength equal to the box-sjz@ the steep gradient 0.000

region leads finally to a complete disruption of the pedestal, —0.005 L. : : :

see Fig. 3. Global mode activity begins early in the simula- 1000 1400 A 1800 2200
0

tion and appears at first in the form of two weakly growing
modes. These modes, one of which propagates inwthe FIG. 4. Normalized ion heat flux v§t,.
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the simulations is qualitatively consistent with Figa)l The  ever, because the length scale normalizatigr & is not a
steepening of the pedestal gradient following the transitiotatyral choice for the instabilities we will obtain in the limit
leads to a trajectory in the—v,; space of Fig. @& that  ; .>1 (5<5g). In this limit, the modes become sensitive
eventually intersects the unstable region near2acii  only to the pressure drop across the pedestal, and a more
(wherev, ;~1). Thus, Fig. 1a) is consistent with the appar- natural normalization scale turns out to 8= 5.

ent onset of an ideal mode in the simulations at such a value As a first example, we consider the profilBs=Py(1

of @. We therefore now turn to the analysis leading to Fig.—tanh{/s)), p=po(1—tanh§/s)), P;=P;o(1—tanh{/s)),

1(a). or fixing 8o=5: P=p=P,=1—tanh§). Solving Eq.(13)
numerically for fixed values of the independent parameters
IV. ANALYTIC MODELS alag ando,;, and maximizing the growth rate over dil;

We now explore the stability of ideal ballooning modes yields the universal stability diagrafsolid curvg shown in

in the presence of a radially localized gradient in the contexf19- 1@. As said earlier, for finite,;, the ballooning sta-
of some simple analytic models. To be consistent with thémhty limit shown in Fig. 1(a) increases monotonically with
pedestal simulations discussed above, we assume the equixi» €xceeding the firstideal MHD limit by about a factor of
librium EXB and ion-diamagnetic flows balanc&/g, 2 forv, i~ 1. To address the physical origin of this curve, we
=—V,iy=—(c/neB)dP;/dx. As a further simplification now turn to the analysis of two even simpler models; a finite-
we eliminate the-dependence of the configuration by taking ramp profile, which yields the stability boundary shown as
the magnetic curvature vector &s- —e,/R (bad curvature the dashed line in Fig. (&), and a step-function profile,
everywherg and$=0, and in analogy to ballooning modes Which leads to the dotted—dashed line. o
consider modes varying as expiky+ikz with k, _Tumning to the ramp profile, we take’(=dP/dx)

= Ja /qR fixed (here a; is a constant of order unity, the =P;’=—1 for —1<x<1, P'=P;'=0 for [x|>1 , and for
meaning of which will be made clear belpwFinally, we  simplicity neglect the variation of the density in the inertia
exclude resistive modes by dropping the resistive t€dm term (p=1). The solution forf(x) that is asymptotically
term) in Ohm'’s Law (4), and neglect thésmal) terms pro-  e|| pehaved at largg and continuous ak=+1 is then
portional toe,, €,, andy,. With these simplifications, Egs. given by 7=exp(—|Ry|[|§<|—1]) for |)A(|>1’ and F

4), (5), (6) may be combined to yieldreturning to un- A A A .
gc?rrrga)lizéd) unitg for clarity yield g = cosk.x)/cosk,) for |x|<1 (even solutions turn out to be
the most unstabje Substituting this form into Eq(13) for

2,2 - .
dy (pw* + '34—:2) dF(x) IX|<1 yields
R a

L B%Z 2dP\. VYT s (14)

—ky<m’7*+?+§&)f(x), (11 Ky K
where , = y—ik,(c/neB)dP; /dx, F=%/v, . Now intro- YvhereRX(Ekxﬁ) is determined by integrating E¢L3) across
ducing the normalizations x==*1as

~ X R . P V2

=50 k=kydo, p=%, P=p. ky tan(k,) = [&,| %) (15

B, = i y= l' Y= 2P , (12) Solvjng Eqgs.(14), (15 numerically for fixed vaIuAes oft/ o

i0 Yo PodoR andv,;, and maximizing the growth rate over &, yields

wheredy, Py, po, etc. are(at this stagparbitrary constants, the stability boundary shown as the dashed line in FHg).1
we obtain The character of the instability near this threshold can be

L o understood from Fig. (b), which shows the corresponding
L (pyys t aclag)dxf(X)] values ofk,, k, of the marginally stable mode along the

=R§(ﬁ%’*+ac/ao+d|5/d3<)~f(;<), (13) stability boundary. In the limiv <1, Fig. 1b) shows that

ky>1, k~1. This is consistent with Eq15), which for k,

N D INAD IAY N 32 I\
whe;re 7*_7_'(kyv*i0/P)dZPi /A%, v4i0=(0r/80)”% @ 1 reduces tok,~m/2. As a result, Eq.(14) becomes
=q°Rp/ 6y and B=8mP,/B*. In the applications described -

< I i L ~
below we takeP,, py, etc. to be the values of the corre- 77*_1_%/“_(_77/2'(3’) , which forv,;=0 andk,—e

sponding quantities at the center of the pedestal, and with tH§2ds 1 the maximum growth ra&g:liaclo" and thus
exception of the step-function pressure profile discussedstability for a>a.. For small but finitev,;<1, the most
later, we takedy= 6, the pedestal half-width. With these unstable mode occurs for large but fin&@z Vlv,;, and
choices, the constantg— vy, (the inverse ideal ballooning the usualw,; stability condition w,;>2v) for this fastest
time), ay— « (the MHD ballooning parametgrand {,*io mode leads to the overall stability conditioa/a.<1

—0,i [the normalized diamagnetic velocity given by Eq. +mv,i/2, which is consistent with the small;; behavior of
(1)]. We keep these parameters distinct at this point, howthe dashed line in Fig.(4). Physically, Iargef(y>1 is favor-
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able for instability because the mode in this limit becomeszation scaled, introduced in Eq.(13) to be ;= as
strongly localized to the regiofx|<1, thus maximizing its above, in which case,,=1 anda./ag=(3/4)B./B. As-

presence in the region where the drive is finite, while mini-suming the external solutidh= exp(—|Ry||§<|), and integrating
mizing the stabilizing contribution of magnetic line bending Eq. (13) acrossx=0, we obtain

in the exterior regior{x|>1. Largek,>1 is linked to the ~ TP,
regimev, ;<1 because only for small,; can modes with v+ (314 Bl B=—kyl(ikyy— 1), (18)
largek, avoid stabilization byw,; . the solution of which is given by Ed17).

As explained earlier, in the regime,;>1, the diamag-
netic frequency € k,v,.;) andE X B shearing rate¢ v, ; for
the hyperbolic tangent modddoth exceed the growth rate of We have explored the stability of the tokamak edge ped-
even the fastest localized modg=<1 for «>«), and as a €stal to ballooning modes using three-dimensional simula-
result instability atRy>1 is no longer possible. Rather, in tions of the Braginskii equations as well a two-fluid stability

this regime a new pressure driven mode V\ﬁgh— k<1 ap- anglysus_of some §|mp]e pedestal models. We fl_n(_j the impact
. : of ion diamagnetic driftEXB shear, and the finite radial
pears in the system. First we note that such a long

wavelenath mode can onlv be unstable in a localized radiT_ocalization of the pedestal pressure gradient on the stability
ginm n only . . ed gradiag ihe pedestal profile depends on the rati&dgf 5, wheres
ent system in the limita>a. in which the stabilizing

contribution of line bending becomes relatively weak. To seeIs the pedestal half-width andg is given by Eq.(1). For

] i . . ) Or/ 6< 1, the stability boundary of the model profiles arise
this, consider modes witk, <1, k,<1 in the most unstable fom the onset of short wavelengttk <1) ballooning

casev,;=0. Equation(15) then reduces té}=|k,|, and s0 modes that are radially localized to the steep gradient region,
Eq. (14) gives }22|Ry| —a./ e, allowing instability only for  and is essentially the same as that obtained from local, ideal
ala;>1lky|>1. In the case of finiter,;, one can again MHD theory. In this caséwhich might apply to larger ma-
solve Eq.(15) for smallk, [assuming tari()=k,], and sub-  chines given thatg scales only aRM), the maximum

H 2
stitute the result into Eq(14). Neglecting the line bending Stables value in the pedestgs~(a./q%) 6/R depends on
_ . T the pedestal width, and thus cannot be determined uniquely
term (= a./a) in Eg. (14), and assuming, =ik,v,; on the

left-hand side(the eigenfrequency of the mode will turn out from stability conS|derat|ops alone. In the lindig/ 6> 1, on.
, A the other hand, conventional ballooning modes localized
to be slow compared ta, ), one then obtainéfor ky<1) \yithin the pedestal region become stable, and the pedestal
y=—i Ry|Ry5* 12 (| Ryl —agla— Rs;ii/4) 12 (16)  Ppressure gradient can far excegd the critical gradjgnt obtained
from local MHD theory. In this case, the stability of the
Maximizing the quantity inside the square root yields thepedestal profile is limited by the onset of an ideal, pressure
most unstable wave numbéy=+0v,?®, and substituting driven “surface” instability that depends only on the pres-
this back into Eq(16) gives the stability condition given by sure drop across the pedestal. The stability of this mode im-
Eq. (2) [Fig. 1(a), dotted—dashed lijeAs said earlier, given poses a limit on the pedestalgiven by Eq.(3), and thus, in
a~q°RpB/35, Eq. (2) leads to thes-independent stability contrast to the caség/5<1, the maximum pedest# can
limit on the pedestaB given by Eq.(3). More generally,d  be determined even though the pedestal width is unspecified.
can be scaled out of the dispersion relation Etf) (all  Near marginal conditions the limiting mode has a real fre-
terms being proportional t6*?), thus yielding an expression quencyw~cs/+/8R that is small compared te,; in the
for the physical growth rate(k,) that is independent of the pedestalit may therefore be sensitive to our assumption that
pedestal width. Introducingy defined in Eq.(1) as a new the ExB and ion diamagnetic drifts precisely balance in the
normalization length scale in place of the pedestal half-widtlpedestal It also has a poloidal wave numbej~ 1/ and a

V. CONCLUSION

6, and definingya=2P,/(podrR), Eq.(16) becomes radial envelope~ 8i that are much larger than the pedestal
o= —ilk Iko82/2+ (k. Sul — (3/4) ../ width. Since the maximum stable value @fa, in this re-
vl yR= = ilkylkyOr/2 (Iky Ol = (3/4) 5o/ B gime[see Eq(2)]is a/ a.~ 6r/ 8, this implies, in the regime
— (kySR)*14)12 (17)  wherea/a, becomes large, that the radial penetration depth

of the edge limiting linear instability £ dg) relative to the
pedestal width {8) increases as/a.>1. Assuming the
linear and nonlinear radial mode widths are comparable
(which need not be the ca3gethis would imply edge local-
ized modes in thex/a.>1 regime would have a more dev-
astating impact on the edge pressure profile.

which has a maximum growth rate &jog==*1 and is
stable for allk, if B<pB.. In addition, along the marginal
stability boundary B= 8., kydg=*1) the mode frequency
is y=Fiyrl2 (o= * yg/2), and one finds from Ed15) that
ky~k,, consistent with Fig. (b).
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