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Diamagnetic stabilization of ideal ballooning modes in the edge pedestal
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The stability of the tokamak edge pedestal to ballooning modes is addressed using
three-dimensional simulations of the Braginskii equations and simple analytic models. The effects
of ion diamagnetic drift and the finite radial localization of the pedestal pressure gradient are found
to be strongly stabilizing whend,dR , whered is the pedestal half-width anddR;r i

2/3R1/3 in the
center of the pedestal. In this limit, conventional ballooning modes within the pedestal region
become stable, and a stability condition is obtained in the two fluid systema/ac,(4/3)dR /d
~stable! which is much less stringent than that predicted by local magnetohydrodynamic~MHD!
theory (a/ac,1). Givena;q2Rb/d, this condition implies a stability limit on the pedestalb:
b,bc , where bc5(4ac/3q2)dR /R. This limit is due the onset of an ideal pressure driven
‘‘surface’’ instability that depends only on the pressure drop across the pedestal. Near marginal
conditions, this mode has a poloidal wavenumberku;1/dR , a radial envelope;dR(.d), and real
frequencyv;cs /AdRR. © 1999 American Institute of Physics.@S1070-664X~99!03007-4#
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I. INTRODUCTION

Magnetohydrodynamic~MHD! analyses of data from
DIII-D ~Ref. 1! and other tokamaks indicate the steep gra
ent region of anH-mode~high confinement mode! edge ped-
estal may well exceed the first ideal stability boundary
ballooning modes. Recent efforts to resolve this apparent
crepancy have focused on the stabilizing effects of the e
bootstrap current.1 We propose here an alternate explanati
based on three-dimensional simulations of the Bragin
equations and the study of some simple analytic models.
find a substantial enhancement of ballooning mode stab
relative to ideal MHD theory can be explained by a two-flu
stability analysis that accounts for both ion diamagnetic
fects and the strong radial localization of the edge pede
pressure gradient. Our results suggest these effects, at ty
H-mode parameters, can allow ideal ballooning modes o
wavelengths to remain stable even well above the first id
MHD stability limit. Long wavelength modes withkud!1
(d being the pedestal half-width! remain stable because th
radial localization of the pedestal gradient greatly weak
the drive of such modes relative to the stabilizing contrib
tion of magnetic line-bending. Shorter wavelength mod
with kud*1, on the other hand, are strongly stabilized by
competitive contributions ofv* i and E3B shear effects.
The key parameter that determines the importance of n
ideal effects is the normalized ion diamagnetic velocityv̂* i

5V* i /(gbd), where V* i5r i
2Vci /Lpi

and gb

5@2cs
2/(LpR)#1/2 ~with cs

25P/r) are the local values of the
ion diamagnetic velocity and inverse ideal ballooning time
the center of the pedestal. AssumingLp;Lpi

;d, v̂* i can be
written as

v̂* i5S dR

d D 3/2

, dR5S Ti

2~Ti1Te!
D 1/3

r i
2/3R1/3. ~1!

For v̂* i!1 (d@dR), the stability boundary of the two fluid
2791070-664X/99/6(7)/2797/5/$15.00
i-

r
is-
e
,
ii
e

ty

f-
al
cal
ll
al

s
-
s
e

n-

t

system, represented in Fig. 1~a! by the solid line, is the same

as that predicted by ideal MHD theory (a/ac51). For v̂* i

;1, however, the two fluid stability limit increases almo

linearly with v̂* i , exceeding the ideal MHD limit by about

factor of 2 whenv̂* i;1. Since the conditionv̂* i*1 is sat-
isfied in theH-mode pedestal of many present day tokam

discharges~in DIII-D, 1 for example, we obtainv̂* i;2 given
d;4r i;0.004R) this may explain the apparent ability o
pedestal gradient in some experiments to exceed the i
limit.

In the regimev̂* i.1, one would not expect a stabilit
limit like that in Fig. 1~a!, or any stability limit at all for that
matter, to arise from conventional ballooning modes, i
ballooning modes that are radially localized within the pe
estal region. As shown below, this is because such local
modes necessarily have short poloidal wavelengthskud*1,
and thus have typical diamagnetic frequenciesv* i*V* i /d
that, in the regimev̂* i.1, always exceed the largest possib
ballooning mode growth rate obtainable from local MH
theory, gmax;gb . Similarly, assuming the poloidalE3B
and diamagnetic flows balance2 VE;V* i ~a result consisten
with the simulations discussed later!, the typicalE3B shear-
ing rate in the pedestalgE;VE8;V* i /d also exceedsgmax

given v̂* i.1. Consistent with this, the modes leading to t

stability boundary in Fig. 1~a! for v̂* i.1 are not localized
modes, i.e., they have poloidal wavelengths and radial en
lopes that are larger than the pedestal width. Unlike conv
tional ballooning modes, furthermore, the stability and eig
frequencies of these long wavelength instabilities
insensitive to the details of the pedestal structure, and dep
only on the plasma pressure drop across the pedestal.
consistency of this with Fig. 1~a! can be understood from th
analytic form of the stability boundary that we obtain later

the asymptotic limitv̂* i@1 @see Fig. 1~a!, dotted–dashed
line#,
7 © 1999 American Institute of Physics
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a

ac
,

4

3
v̂

* i
2/3[

4

3

dR

d
~stable!. ~2!

With the substitutiona.q2Rb/d, the pedestal scale lengt
d drops out of this condition, leading to the (d independent!
stability condition on the pedestalb for v̂* i@1,

b,bc[
4ac

3q2

dR

R

5
4ac

3q2 S Ti

2~Ti1Te!
D 1/3S r i

RD 2/3

~stable!. ~3!

Physically, the limiting mode in this case is analogous to
instability of a light fluid supporting a heavy fluid again
gravity, that is, the sharp boundary limit of the Raleigh
Taylor instability. Such sharp boundary modes, in either
case of Raleigh–Taylor or ballooning modes, can be
tained from the analogous dispersion relation for local mo
in diffuse profiles by a simple prescription, namely, by r
placing the inverse profile scale lengths 1/Lr5ur8/ru, 1/LP

5uP8/Pu, etc. by the wave number along the boundary.
the ballooning mode case this substitution givesg25gb

2

[2cs
2/(RLp)→gk

2 with gk
2[2cs

2k/R, which is identical to
the dispersion relation we obtain later for the unstable mo
associated with Eq.~3! if the stabilizing contributions ofv* i

and magnetic line bending are neglected. Similarly, w
uPi8/Pi u→k, one findsv

* i
2 →(kdR)3gk

2 . The scale lengthdR

is therefore introduced into the problem through the addit
of diamagnetic effects, which cutoff the monotonic increa
of g}Ak at k;1/dR , and result in the maximum growth rat
g;gR52cs

2/(dRR). Finally, these fastest modes are sta
lized by the addition of line bending effects ifgR

2

&VA
2/(qR)2, or equivalentlyb&dR /(q2R), consistent with

Eq. ~3!.
We first describe the Braginskii model on which o

simulations are based in Sec. II. In Sec. III, we describ
simulation of the evolution of the edge pedestal in the c
text of theL –H ~low–high! transition model of Ref. 3. In
Sec. IV, we describe the two-fluid stability analyses of so
simple analytic models which are qualitatively consiste
with the behavior of the simulations. In Sec. V, we summ
rize our main conclusions.

FIG. 1. ~a! Stability boundaries for ideal ballooning modes.~b! Wave num-
bers of marginally stable mode for ramp profile.
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II. MODEL

The simulations are carried out in a poloidally and ra
ally localized, flux-tube domain that winds around the toru4

Assuming a shifted-circle magnetic geometry, the nonlin
equations for perturbations of the magnetic fluxc̃, electric
potentialf̃, densityñ, electron and ion temperaturesT̃e , T̃i ,
and parallel flowṽ i are

â@] tc̃1ad~111.71he!]yc̃#2¹ i@f̃2ad~ p̃e10.71T̃e!#5 J̃,
~4!

¹'•dt¹'~f̃1tadp̃i !1Ĉ~ p̃1G̃!2¹ iJ̃50, ~5!

dtñ1]yf̃2@enĈ~f̃2adp̃e!2ev¹ iṽ i1aden~11t!¹ iJ̃#

50, ~6!

dtT̃i1h i]yf̃2 2
3 @enĈ~f̃2adp̃e1 5

2 tadT̃i !2ev¹ iṽ i

1aden~11t!¹ iJ̃#2 2
3 k i¹ i~¹ iT̃i1âh i]yc̃ !50, ~7!

dtT̃e1he]yf̃2 2
3 @enĈ~f̃2adp̃e2 5

2 adT̃e!2ev¹ iṽ i

11.71aden~11t!¹ iJ̃#2 2
3 ke¹ i~¹ iT̃e1âhe]yc̃ !50,

~8!

dtṽ i52ev@¹ i~ p̃14G̃!1~2p!2a]yc̃#, ~9!

where ¹ i5]z1âz3¹'c̃•¹' , dt5] t1z3¹'f̃•¹' , ¹'
2

5(]x1L(z)]y)
21]y

2 , Ĉ5(cos(2pz)1L(z)sin(2pz)2e)]y

1sin(2pz)]x , L(z)52p ŝz2a sin(2pz), G̃52gp@Ĉ(f̃
1tadp̃i),24(ev /en)¹ iṽ i#, J̃5¹'

2 c̃, p̃a5ñ1T̃a , p̃5( p̃e

1t p̃i)/(11t). The time~t!, perpendicular (x,y) and paral-
lel ~z! normalization scales aret05(RLn/2)1/2/cs , L0

52pqa(n0e2h irsR/mivci)
1/2(2R/Ln)1/4, and Lz52pqaR,

with an associated diffusion rateD05L0
2/t0 . The diamag-

netic and MHD parameters are

ad5
rscst0

~11t!LnL0
, a5qa

2R
8p~pe01pi0!

B2Lp

. ~10!

Other parameters aret5Ti0 /Te0 , ha5Ln /LTa
, e5a/R,

en52Ln /R, ev5en
1/2/(4pqa), â5(2p)2aLp /Ln , Ln /Lp

5@11he1t(11h i)#/(11t), ke51.6ad
2en(11t), k i

50.064(mp /mi)
1/2t5/2ad

2en(11t), gp50.16p2qa
2k i . The

parallel coordinate valuesz50 and z561/2 represent the
outboard and inboard midplanes, respectively. The tra
verse flux coordinatesx,y correspond to local radial and po
loidal variables. Unless noted otherwise, we consider the
ues ŝ51, t51, en50.02, e50.2, qa53, h i5he51,
mi /mp52.

III. SIMULATION RESULTS

The present study extends the investigation of pede
stability begun in our earlier work,3 so we begin this section
with a brief review of some past results. We argue in Ref
that theL –H transition, and thus the formation of the edg
pedestal, is linked to the dependence of the turbulent e
transport on the MHD and diamagnetic parametersa, ad . In
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the regime of higherad;1, small but finite values ofa lead
to a strong suppression of transport, and as a result, in
regime a local increase in the plasma pressure grad
above a threshold ina, causes areductionof the transport.
In the presence of a fueling source, this reversed depend
of the transport on the gradient makes it impossible for
system to maintain transport equilibrium, and leads to
spontaneous steepening of the profiles above thresholdsa
andad that we associate with theL –H transition.

We simulated this transition in Ref. 3 in the context o
simple model. The model includes a source and sink~radi-
ally periodic! in the density Eq.~6!, intended to represen
neutral particle fueling in the edge. In response to the sou
a modulation of the density profile forms that steepens
gradient in the center of the simulation domain. The stren
of the source is chosen so that forad;1 and a!1 the
source produces only a slight steepening of the profile be
the system comes into equilibrium. The MHD parametera is
then slowly increased with time. With increasinga the trans-
port drops and the source causes the gradient to stee
enhancing the turbulence until a new equilibrium is reach
At a critical value of a, the L –H threshold condition is
crossed and the pressure profile spontaneously begin
steepen@see Fig. 2~a!, solid line#. This steepening leads t
the formation of a sheared poloidalE3B flow @Fig. 2~a!,
dashed line# which balances the poloidal ion diamagne
drift.

As was mentioned in Ref. 3, the steepening of the p
files following the transition in the simulations is not limite
by the idealn→` stability boundary. This is the case for th
profile in Fig. 2~a!, which is a plot of the ion pressure profil
roughly 1000t0 after the transition in a simulation withen

50.02, ad51. The a-value at the center of the pedesta
a(x50)51.6, is well beyond the first stability limit (a
50.8 atŝ51). Shortly after the time of Fig. 2, however, th
onset of a rapidly growing global mode withky50.4 ~poloi-
dal wavelength equal to the box-size! in the steep gradien
region leads finally to a complete disruption of the pedes
see Fig. 3. Global mode activity begins early in the simu
tion and appears at first in the form of two weakly growi
modes. These modes, one of which propagates in thev* e

FIG. 2. Pressure~a, solid!, VEy ~a, dashed!, anddVEy /dx ~b, solid! profiles.
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direction and the other in thev* i direction, resemble the two
dominant linear resistive ballooning modes in our system
ky50.4. Thev* i root eventually transitions to the rapidl
growing instability that destroys the pedestal. The time e
lution of the poloidally averaged ion heat flux during th
sequence of events prior to the pedestal crash is show
Fig. 4. The large initial drop in the flux (t/t0;1100– 1300)
represents the transition. After this, coherent mode activity
the pedestal leads to weakly growing, rapid oscillatio
~mostly at v;v* e) for t/t0.1600, followed by a rapid
crash phase att/t0;2300– 2350.

As noted earlier, given the balance that exists in pede
betweenVE3B and V* i , the stabilizing contribution due to
E3B shear is generally competitive with that of the io
diamagnetic drift for globalky;1/d modes. TheE3B shear
effect alone, however, is not sufficient to explain the stabi
of the simulations, since the actualE3B shear vanishes in
the center of the pedestal where the ion-diamagnetic com
nent of the flow~and thusVE3B) has a maximum. In the cas

v̂* i;1, which applies to the simulation just described
later times, this results in a region, comparable to the h
width of the pedestal, in which theE3B shearing rate is too
small to account for the absence of ideal modes. This
demonstrated in Fig. 2~b!, which compares the localE3B
shearing rate~solid! in the pedestal of Fig. 2~a! with the
maximum ideal MHD ballooning mode growth rat
~dashed!.

If we attribute the weakly growing modes following th
transition to nonideal~e.g., resistive! effects, the behavior of

FIG. 3. Global mode leading to the pedestal crash.

FIG. 4. Normalized ion heat flux vst/t0 .
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the simulations is qualitatively consistent with Fig. 1~a!. The
steepening of the pedestal gradient following the transit
leads to a trajectory in thea – v̂* i space of Fig. 1~a! that
eventually intersects the unstable region neara;2acrit

~wherev̂* i;1). Thus, Fig. 1~a! is consistent with the appar
ent onset of an ideal mode in the simulations at such a v
of a. We therefore now turn to the analysis leading to F
1~a!.

IV. ANALYTIC MODELS

We now explore the stability of ideal ballooning mod
in the presence of a radially localized gradient in the cont
of some simple analytic models. To be consistent with
pedestal simulations discussed above, we assume the
librium E3B and ion-diamagnetic flows balance,VEy

52V* iy52(c/neB)dPi /dx. As a further simplification
we eliminate thez-dependence of the configuration by takin
the magnetic curvature vector ask52êx /R ~bad curvature
everywhere! and ŝ50, and in analogy to ballooning mode
consider modes varying as exp(gt1ikyy1ikzz) with kz

[Aac/qR fixed ~here ac is a constant of order unity, th
meaning of which will be made clear below!. Finally, we
exclude resistive modes by dropping the resistive term~J
term! in Ohm’s Law ~4!, and neglect the~small! terms pro-
portional toen , ev , andgp . With these simplifications, Eqs
~4!, ~5!, ~6! may be combined to yield~returning to un-
normalized units for clarity!,

]xF S rgg* 1
B2kz

2

4p D ]x f̃ ~x!G
5ky

2S rgg* 1
B2kz

2

4p
1

2

R

dP

dx D f̃ ~x!, ~11!

where g* 5g2 iky(c/neB)dPi /dx, f̃ 5f̃/g* . Now intro-
ducing the normalizations

x̂5
x

d0
, k̂y5kyd0 , r̂5

r

r0
, P̂5

P

P0
,

P̂i5
Pi

Pi0
, ĝ5

g

g0
, g0

25
2P0

r0d0R
, ~12!

whered0 , P0 , r0 , etc. are~at this stage! arbitrary constants
we obtain

] x̂@~ r̂ĝĝ* 1ac /a0!] x̂ f̃ ~ x̂!#

5 k̂y
2~ r̂ĝĝ* 1ac /a01dP̂/dx̂! f̃ ~ x̂!, ~13!

where ĝ* 5ĝ2 i ( k̂yv̂* i0 / r̂)dP̂i /dx̂, v̂* i05(dR /d0)3/2, a0

5q2Rb/d0 andb[8pP0 /B2. In the applications describe
below we takeP0 , r0 , etc. to be the values of the corre
sponding quantities at the center of the pedestal, and with
exception of the step-function pressure profile discus
later, we taked05d, the pedestal half-width. With thes
choices, the constantsg0→gb ~the inverse ideal ballooning
time!, a0→a ~the MHD ballooning parameter!, and v̂* i0

→ v̂* i @the normalized diamagnetic velocity given by E
~1!#. We keep these parameters distinct at this point, h
n

e
.

t
e
ui-

he
d

-

ever, because the length scale normalizationd05d is not a
natural choice for the instabilities we will obtain in the lim

v̂* i@1 (d!dR). In this limit, the modes become sensitiv
only to the pressure drop across the pedestal, and a m
natural normalization scale turns out to bed05dR .

As a first example, we consider the profilesP5P0(1
2tanh(x/d)), r5r0(12tanh(x/d)), Pi5Pi0(12tanh(x/d)),
or fixing d05d: P̂5 r̂5 P̂i512tanh(x̂). Solving Eq. ~13!
numerically for fixed values of the independent paramet
a/ac and v̂* i , and maximizing the growth rate over allk̂y

yields the universal stability diagram~solid curve! shown in
Fig. 1~a!. As said earlier, for finitev̂* i , the ballooning sta-
bility limit shown in Fig. 1~a! increases monotonically with

v̂* i , exceeding the first ideal MHD limit by about a factor o
2 for v̂* i;1. To address the physical origin of this curve, w
now turn to the analysis of two even simpler models; a fini
ramp profile, which yields the stability boundary shown
the dashed line in Fig. 1~a!, and a step-function profile
which leads to the dotted–dashed line.

Turning to the ramp profile, we takeP̂8([dP̂/dx̂)
5 P̂i8521 for 21, x̂,1, P̂85 P̂i850 for ux̂u.1 , and for
simplicity neglect the variation of the density in the inert
term (r̂51). The solution for f̃ ( x̂) that is asymptotically
well behaved at largex̂ and continuous atx̂561 is then
given by f̃ 5exp(2uk̂yu@ux̂u21#) for ux̂u.1, and f̃

5cos(k̂xx)/cos(k̂x) for ux̂u,1 ~even solutions turn out to be
the most unstable!. Substituting this form into Eq.~13! for
ux̂u,1 yields

ĝĝ* 5
k̂y

2

k̂y
21 k̂x

2
2

ac

a
, ~14!

wherek̂x([kxd) is determined by integrating Eq.~13! across
x̂561 as

k̂x tan~ k̂x!5uk̂yuS ĝ21ac /a

ĝĝ* 1ac /a
D . ~15!

Solving Eqs.~14!, ~15! numerically for fixed values ofa/ac

andv̂* i , and maximizing the growth rate over allk̂y , yields
the stability boundary shown as the dashed line in Fig. 1~a!.
The character of the instability near this threshold can
understood from Fig. 1~b!, which shows the correspondin
values of k̂x , k̂y of the marginally stable mode along th
stability boundary. In the limitv̂* i!1, Fig. 1~b! shows that
k̂y@1, k̂x;1. This is consistent with Eq.~15!, which for k̂y

@1 reduces tok̂x'p/2. As a result, Eq.~14! becomes
ĝĝ* .12ac /a2(p/2k̂y)

2, which for v̂* i50 and k̂y→`

leads to the maximum growth rateĝ0
2512ac /a, and thus

instability for a.ac . For small but finitev̂* i!1, the most

unstable mode occurs for large but finitek̂y.Ap/ v̂* i , and
the usualv* i stability condition (v* i.2g) for this fastest
mode leads to the overall stability conditiona/ac,1
1p v̂* i /2, which is consistent with the small-v̂* i behavior of
the dashed line in Fig. 1~a!. Physically, largek̂y@1 is favor-
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able for instability because the mode in this limit becom
strongly localized to the regionux̂u,1, thus maximizing its
presence in the region where the drive is finite, while mi
mizing the stabilizing contribution of magnetic line bendin
in the exterior regionux̂u.1. Large k̂y@1 is linked to the
regime v̂* i!1 because only for smallv̂* i can modes with
large k̂y avoid stabilization byv* i .

As explained earlier, in the regimev̂* i.1, the diamag-
netic frequency (5 k̂yv̂* i) andE3B shearing rate (; v̂* i for
the hyperbolic tangent model! both exceed the growth rate o
even the fastest localized mode (ĝ51 for a@ac), and as a
result instability atk̂y.1 is no longer possible. Rather, i
this regime a new pressure driven mode withk̂y. k̂x!1 ap-
pears in the system. First we note that such a lo
wavelength mode can only be unstable in a localized gr
ent system in the limita@ac in which the stabilizing
contribution of line bending becomes relatively weak. To s
this, consider modes withk̂y!1, k̂x!1 in the most unstable
casev̂* i50. Equation~15! then reduces tok̂x

2.uk̂yu, and so
Eq. ~14! givesĝ2.uk̂yu2ac /a, allowing instability only for
a/ac.1/uk̂yu@1. In the case of finitev̂* i , one can again
solve Eq.~15! for small k̂x @assuming tan(k̂x). k̂x], and sub-
stitute the result into Eq.~14!. Neglecting the line bending
term (5ac /a) in Eq. ~14!, and assumingĝ* . i k̂yv̂* i on the
left-hand side~the eigenfrequency of the mode will turn o
to be slow compared tov* i), one then obtains~for k̂y!1)

ĝ52 i uk̂yuk̂yv̂* i /26~ uk̂yu2ac /a2 k̂y
4v̂

* i
2 /4!1/2. ~16!

Maximizing the quantity inside the square root yields t
most unstable wave numberk̂y56 v̂

* i
22/3, and substituting

this back into Eq.~16! gives the stability condition given by
Eq. ~2! @Fig. 1~a!, dotted–dashed line#. As said earlier, given
a;q2Rb/d, Eq. ~2! leads to thed-independent stability
limit on the pedestalb given by Eq.~3!. More generally,d
can be scaled out of the dispersion relation Eq.~16! ~all
terms being proportional tod1/2), thus yielding an expressio
for the physical growth rateg(ky) that is independent of the
pedestal width. IntroducingdR defined in Eq.~1! as a new
normalization length scale in place of the pedestal half-wi
d, and defininggR

252P0 /(r0dRR), Eq. ~16! becomes

g/gR52 i ukyukydR
2/26~ ukydRu2~3/4!bc /b

2~kydR!4/4!1/2 ~17!

which has a maximum growth rate atkydR561 and is
stable for allky if b,bc . In addition, along the margina
stability boundary (b5bc , kydR561) the mode frequency
is g57 igR/2 (v56gR/2), and one finds from Eq.~15! that
kx'ky , consistent with Fig. 1~b!.

Given that the asymptotic dispersion relation Eq.~17! is
independent ofd, one would expect the same result could
recovered by considering the limitd→0 for fixed ky andb,
in which case either of the models described above appro
the step profile P52P0(12Q(x)), or P̂5 P̂i5 r̂52(1
2Q( x̂)) ~the profilesr̂52(12Q( x̂)) and r̂51 turn out to
yield the same result in this case!. Here, we take the normal
s

-

-
i-

e

h

ch

ization scaled0 introduced in Eq.~13! to be d05dR as
above, in which casev̂* i051 andac /a05(3/4)bc /b. As-
suming the external solutionf̃ 5exp(2uk̂yuux̂u), and integrating
Eq. ~13! acrossx50, we obtain

ĝ21~3/4!bc /b52uk̂yu~ i k̂yĝ21!, ~18!

the solution of which is given by Eq.~17!.

V. CONCLUSION

We have explored the stability of the tokamak edge p
estal to ballooning modes using three-dimensional simu
tions of the Braginskii equations as well a two-fluid stabili
analysis of some simple pedestal models. We find the imp
of ion diamagnetic drift,E3B shear, and the finite radia
localization of the pedestal pressure gradient on the stab
of the pedestal profile depends on the ratio ofdR /d, whered
is the pedestal half-width anddR is given by Eq.~1!. For
dR /d,1, the stability boundary of the model profiles ari
from the onset of short wavelength (kud,1) ballooning
modes that are radially localized to the steep gradient reg
and is essentially the same as that obtained from local, id
MHD theory. In this case~which might apply to larger ma-
chines given thatdR scales only asR1/3), the maximum
stableb value in the pedestalb;(ac /q2)d/R depends on
the pedestal width, and thus cannot be determined uniq
from stability considerations alone. In the limitdR /d.1, on
the other hand, conventional ballooning modes localiz
within the pedestal region become stable, and the pede
pressure gradient can far exceed the critical gradient obta
from local MHD theory. In this case, the stability of th
pedestal profile is limited by the onset of an ideal, press
driven ‘‘surface’’ instability that depends only on the pre
sure drop across the pedestal. The stability of this mode
poses a limit on the pedestalb given by Eq.~3!, and thus, in
contrast to the casedR /d,1, the maximum pedestalb can
be determined even though the pedestal width is unspeci
Near marginal conditions the limiting mode has a real f
quencyv;cs /AdRR that is small compared tov* i in the
pedestal~it may therefore be sensitive to our assumption t
theE3B and ion diamagnetic drifts precisely balance in t
pedestal!. It also has a poloidal wave numberku;1/dR and a
radial envelope;dR that are much larger than the pedes
width. Since the maximum stable value ofa/ac in this re-
gime@see Eq.~2!# is a/ac;dR /d, this implies, in the regime
wherea/ac becomes large, that the radial penetration de
of the edge limiting linear instability (;dR) relative to the
pedestal width (;d) increases asa/ac@1. Assuming the
linear and nonlinear radial mode widths are compara
~which need not be the case5!, this would imply edge local-
ized modes in thea/ac@1 regime would have a more dev
astating impact on the edge pressure profile.
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