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Dean Flow is the azimuthal flow of fluid between static concentric cylinders. In a magnetized
plasma, there may also be radial stratification of the pressure. The ideal magnetohydrodynamic
stability of such a flow in the presence of a strong axial magnetic field and an added radial
gravitational force is examined. It is shown that both the Kelvin—Helmholtz instability and
pressure-gradient-driven interchanges can be stabilized if the flow is driven by a unidirectional
external force and if the plasma annulus is sufficiently {lienge aspect ratio These results find
application in schemes using centrifugal confinement of plasma for fusion199® American
Institute of Physicg.S1070-664X99)01110-4

I. MOTIVATION tive, d?Q/dr2. This instability is potentially less serious than
the interchange since, as is known from ordinary flfidthe
stability criterion is profile-dependent and, for reasonable
O;Srofiles, the mode may be only weakly growing, that is un-

An idea revived recently is to use centrifugal forces of
rotating plasma to augment magnetic confinement of therm

nuclear fusion plasmds> One possible configuration that stable from only nonideal effects such as viscosity.

employs centrifugal confinement is shown in Fig. 1. The o Finally, one important aspect of the MHD stability of
plasma rotates toroidally at supersonic speeds, thus localignis sjtyation, in contrast to ordinary fluids, is that the strong
ing the plasma, from centrifugal forces, to the straight secyaqnetic field completely stabilizes wavenumbers parallel to

tion on the outboard side. Such a configuration is expected e field. Thus, while the fastest growing modes in fluids are

have at most a weak toroidal magnetic field — the pOIOidaIazimuthally symmetric rolls in the poloidal plane, in an
field dominates.

. ) . MHD plasma the only possible instabilities are flutes with
The central question for the success of this scheme is th

ideal magnetohydrodynami®HD) stability of the rapidly &V%O. This feature makes MHD plasmas more stable than

. . . . . unmagnetized fluids: in particular, conclusions cannot
rotating configuration. To this end, there are several consid- g P

. . . readily be drawn from ordinary fluid stability of, for in-
erations that enter. We discuss these below: .
. . - o= . stance, Dean FloiW(described further below
(a) The predominant MHD instability is the flute, inter- : . : . :
. . . . In this paper, we investigate in greater detail the above
change mode — there is no kink mode in the system since . o .
. Seemingly conflicting issues. To be sure, analytical and nu-
there are no substantial parallel plasma currents. The . . : A
. . o merical calculations done to date, using simplified models,
Kelvin-Helmholtz instability is also a concern. suggest that velocity shear is a dominant influence and could
(b) The free energy for the interchange mode is the pres- 99 y

. e . 9 _
sure gradient. This energy is released by the “gravitationarc"gmﬂcamly suppress the interchange motie8- These cal

L . . . culations also suggest that the KH is not a concern given the
acceleration” in the system, in particular the radially out- . : .
. . 5 velocity profiles expected. A complete assessment of stabil-
ward centrifugal acceleration{)<, as well as thermal accel-

eration from the curvature of the field linkss they go from !ty, for the geom_etry o_f Fig. 1 for example,. wil have ©
the straight section to the insulatoisee Fig. 1 (€ is the involve a three-dimensiondBBD) MHD numerical simula-

angular frequency.Because the straight section does nottlon' Work is in progress along these lines. For the present

contribute to the curvature, the magnitude of the averageﬁ?igz:’svtvue dSIThﬂltfysm‘\a/vzyf;ﬁlm igrr?v?r:\::ri]r?t Iantcﬂlgtr:‘stez;t 2na2r_1a-
curvature acceleration is of order¥(a)(a/L)=cZ/L, where . y y gy 9

. : pect ratio system could be stabilized.
Cs is the sound speed ion thermal speed. Thus, the com- : . . .
. : . . 2 2 Our model problem is described in the next section. The
bined effective gravity can be writtegug—rQ“+cg/L.

) o L stability analysis is given in Sec. Ill. We summarize our
(c) While the plasma rotation is destabilizing on account;. " . . )
of rQ?, the same rotation tends to stabilize the flute mode ”ﬂndmgs n Sec._ IV and apply them to centrifugally confined
there is shear in the angular frequefi&ydQ/dr. To be sure, plasmas(CCP9 in Sec. V.
this possibility constitutes an added motivation for the ide
of centrifugal confinemerft. The key question remains, a“' THE DEAN FLOW MODEL
though, as to which of the competing effects, centrifugal = The model we use to assess the stability of the system of
acceleration versus rotation shear, prevalils. Fig. 1 is the flow system known in fluid mechanics as Dean
(d) The Kelvin—Helmholtz(KH) instability also has to Flow.” This model is depicted in Fig. 2. Essentially, Fig. 2 is
be considered. The free energy of the KH is the spatial variathe magnetic field of Fig. 1 straightened out; however, we
tion in the angular frequency, especially the second derivahave added a radially outward external gravitational force to
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FIG. 2. A model for the configuration of Fig. 1 with an effective grav'jy,
modeling the field line curvature.
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FIG. 1. A possible magnetic configuration for a centrifugally confined
plasma. where

u=zxVe¢, p=nT. (4)

model the curvature in the field of Fig. 2. As discussed earWe have assumed tha; 0, in which case the field is com-

lier in part (b) of Sec. I, the magnitude of this artificial grav- Pletely specified byB=Bo2, Bo=const. We have also as-
ity, g, is O(CZ/L) Such ag force is not normally included in  sumed thag acts only on the pressurg, In ordinary fluids,
Dean Flow as conventionally defined. The key feature ofgravitational forces act on the density. In a magnetized
Dean Flow that distinguishes it from Couette Flow is that theplasma, it is well-known that the “effective gravity” from
equilibrium azimuthal flow, G=8V(r), is zero at the Magnetic curvature terms acts on the presstte. _
boundarie’ (i.e., the boundaries are static and the flow is  From the above, the equilibrium of Fig. 2 is given by

forced within the fluid. Such a setup is relevant to centrifu- B~B.2 5)
gally confined plasma schemes. In our model, we will as- o™
sume that the magnetic field is very strong: more precisely, n=n(r), p=p(r), (6)

we will adopt the ordering =), V(r)=dgld @
u=6Vv(r), r= r.

We will also use the angular frequené€y(r), defined ac-
whereV, is the Alfven speed. This is realistic for CCP plas- cording toV=r{}.
mas and analytically convenient since it renders the system

two-dimensional §/9z=0) and incompressible, and allows |||. STABILITY ANALYSIS

the use of the MHD reduced equations. i ) _—
Given these assumptions, the governing equations are W& now linearize(1)—(3) about the above equilibrium.

the well-known reduced equations of MHBFor the vari-  Wé assume perturbations_ of the_ form—n(r)
ablesn, the mass densityp, the pressure, ane, the flow jn(r)exp[lma—lwt]. The resulting equations far, ¢, and
streamfunction, the equations are given by p, after some algebra, are

CS""V<VA y
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wn+(m/rn’ =0, (8) wp+(m/r)p' $=0. (19
oV -[NV]+(m/ir)(nf) = (m/r)[rQ%n+gp/T], (9) If we let m—o in (17) and (19), the ansatzd/dr
. . <(m/r) is valid and the system reduces to
wp+(m/r)p’ ¢=0, (10 S o -

where wVehp——(m/r) rQn’In+gp’/pleo, (20
f(r)=(r2Q)'Ir, (11) fro.m which we obtain_the wgll-known “local dispersion re-
- lation” for the usual simple interchanje
w=w—m), (12

_ . o . ®?=rQ2%n'/n)+g(p'/p). (21)
and primes denote differentiation with respecttdhe sys-

tem has to be solved subject to the boundary conditions In what follows, we will examine the stability of the full
$(R)=0, $(R+a)=0. Here,R is the radius of the inner System(8)—(10) by methods similar to the quadratic form

cylinder anda is the width of the annulus. and the local dispersion shown above. For this paper, we
We begin our stability analysis by first considering somehave been unable to assess stability in the completely general
special cases. case. Consequently, we will only present a stability analysis

for the large aspect ratio limitR/a)>1. In this limit, one
general observation may be made fr¢8)—(10). SinceR
A. Rayleigh’s theorem >a, we may also assumd/dr>1/r in (8)—(10). In that
case, if we assume further that-O(1) and thatw~mQ, it

In the limit n”=0 andp’=0, n andp vanish and the eis readily seen that the thrégrouped terms in(9) scale as

system reduces to the familiar Kelvin—Helmholtz eigenvalu

equatiorf}” viz. 1:1:(a/R). (22

@VZ+(mir)f'$=0. (13 Based on22), we will treat the right-hand-sidéRHS) of (9)
An important theorem, akin to Rayleigh’s inflexion-point &S @ perturbation in the limk/a>1. o
theorem for plane parallel flow in fluide, is readily ob- Befc_)re proceeding, we notg that thg generallgatlon of the
tained from(13) by constructing a quadratic form. Dividing quadratic form(14) can be readily obtained. We find
by w and operating o13) with [R*2dr r'$*, integrating by m[B[2(nf)’ o*
parts, and using the homogeneous boundary conditions, we (n|€¢|2>=< — >
obtain Mol

. mf’ ~12 rﬁ’|2 gmz 5*
<|V¢|2>:< l_d)' > (14) +< rQ*—+ ——| =), (23
row n Tp w
where(h)= [dr h. The imaginary part of14) is where the second term on the RHS is a small termRor
mt| 32 >a. Note that then’ andp’ terms in the denominators of
0= 'y< — > , (15  this term are not an issue, for a$—0,n—0 asn’ [see Eq.
rol (8)]; likewise for p’—0, thus there is no singularity. The

where we have used=w, +iy. It follows that if y=0, f’  Imaginary part of the quadratic form becomes
must vanish somewhere in the domain. Conversely, the sys- 2(nf)’
tem is marginally stable if’ #0, i.e., 0=— <m|¢>|_(n ) >

d[1d flol®

— | ——(r?Q) | #0=>marginal stability. (16) —

dr[rdr(r } n|2 2 w*

o _ _ mzr_|+gf5| Im| =1 ), (24)

Thus, the system is ideally stablefif+ 0, although it could n’ Tp’' o)

be unstable to nonideal modes mediated by viscosity. )
where we can substitute

B. Simple interchange mode m o* 2yw,
|wf?

Now suppose thah’ andp’ are both nonzero but that 0]

the angular frequency is constant. The only effed®ofthen,
should be to provide a centrifugal acceleration and the instae. Long wavelength modes for R/a>1
bility should resemble a Rayleigh—Taylor-type interchange

mode. Indeed, if)=const., we obtain the system For the long wavelength orderimp~0(1), d/dr~1/a

o (both for equilibrium as well as perturbed quantifiesnd if
wV-[NVe]+2(mirn’ Q= (m/r)[rQ%n+gp/T], R>a, we may use the quadratic forf4) to assess stability.
(17)  To do this, we write(24) as

wn+(m/irn’ =0, (18) y[A+B]=0, (25)
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where B/A~O(a/R). Now if (nf)’#0, thenA is nonzero
andB may be neglected fa/R<<1. It follows thaty=0 to

all orders. Thus, we obtain the modified version of Ray-

leigh’s theorem:

dind . -
—[r—dr(rzﬂ)} # 0= >marginal stability.

dr (26

D. Short wavelength modes, m>1, for R/a>1

We now consider short wavelength modes> 1, for a
large aspect ratio system. For=>1, we may make the “lo-
cal” ansatz|d/dr|<(m/r)|¢|, but d/dr on equilibrium
guantities~1/a. In that cas€8)—(10) simplify to

d_,~ aln\ galp

Gyl 1]- 25 [2). @
d/n n'\ dp

a&ﬂ:ﬁﬂﬁ- 8
d(p| (p'|d¢

a(a)—(a)%' 29

whered/dt=¢d/dt+Qadl96 and we have reverted to partial

derivatives. We will ler —R+x, thus,V2—#2+R 243,
As in a previous calculationye now make the follow-
ing transformations

X=X, (30
£=60—-0Ot, (32
7=t. (32
In the new coordinates, we have
, ~ -
i z~:_m_9_‘9p (33
ar Rdén Roép’
an n'1dé
Jrn nRaE’ (34)
ap p'lad
Jp_piig (35
arp p RdE
where
ve=| (2 —q a2+1az 36
| lax Tag] T RZag2| (36)

In these coordinate% is ignorable. The fastest growth rates
are obtained forg/gX=0. We thus look for modes with

dloX=0. (d/9¢) is also ignorable: we let/9é—im. We
then obtain

9 ime n gp
_ r\21 T 2__ =2
S+ (RO M2=m = —RO2 - o 37)
o _nim_ 38
gm R 9
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Jp_ pim.
ap pR” (39
Eliminatingn andp, we get forg
” 1+(RQ'7)2]= RQZn,+ Pl 40
S2[1+(RQ 7] p= 2 (40)

For RQ?n’/n+gp’/p>0, the system is stable. For this
quantity negative, the system is unstable. As discussed in
detail in Ref. 5, on short time scaleR()’' 7<1, the mode
grows exponentially as ekg,t] with

yg=[—RQ2n'In—gp’/p]*2 (41)

On longer time scaleRQ)’' 7>1, the mode still grows but
only algebraically, ag. If viscosity and resistivity are in-
cluded, the algebraic growth is efficiently phase mixed by
the velocity shear, resulting in stabilization. A “stability cri-
terion” can be written ifRQ’> ;. This is given by

R?Q'?>92In[R,] (42

whereR =y r2/m?(un)*?is a Reynolds number.

Between(41) and(42), we may now assess the stability
of a system such as Fig. 1 if we lgt—c?/L, for L>a.
Schematically, ifV'=(RQ)'~RQ/a, we have the sche-
matic stability criterion

R | a 1 Ra

= L_n+—M§LLp InR,,

- 43

wherelL, is the density scale siz¢,, is the pressure scale
size,L/a is the elongation, and=V/c,~RQ/cg is the
Mach number. FoL,~a andL,~a, the centrifugal force is
the dominant destabilizing mechanism M§>(R/L) while
the curvature gravitational force dominates MP<R/L.
We will discuss all these in reference to CCPs in Sec. V.

As a final remark, we note that the stability criterion
(42), taken from the work in Ref. 4, is based on a very
conservative interpretation of the mode growth. Only a nu-
merical simulation can quantify this condition in more real-
istic terms.

IV. SUMMARY OF FINDINGS

We have investigated the stability of Dean Flow in
MHD in the limit of large aspect ratio. We can summarize
our findings as follows:

(i) long wavelength modes, witm~O(1) to m
~O(R/a), are primarily KH-type modes. These can be
made marginally stable, to ideal perturbations, if the Ray-
leigh criterion

dind
dr|rdr

dr
is satisfied throughout the plasma. As we will show below,
this condition is achieved in Dean Flow and, therefore, for
CCPs. It is possible that nonideal instability can occur, me-
diated by viscosity:’ These instabilities are expected to
grow at a rate of ordef)/R;, whereR,, is the viscous
Reynolds number and is a fractional power. This is suffi-
ciently slow, that a weak toroidal magnetic fieB;<B,,,

(44)

(rzﬂ)}io,
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could be used to stabilize such instability since a toroidawe have assessed the stability of CCPs with respect to ideal
magnetic field adds magnetic shear to the system which praMHD instabilities. Based on the Dean Flow model, we con-
vides stabilizing Alfvaic forces'! The magnetic shear re- clude that long wavelength modes are stable for large aspect

sults in a stabilizing frequency that scales Bs ABp)Va/L; ratio if the Rayleigh criterion is satisfied. The latter criterion
since the viscous KH will have a growth rate of ordetR;, is, in fact, readily satisfied, for this is just the condition one
it follows that a very wealB will suffice sinceR,>1. expects if the toroidal flow is driven by an external force in

(ii) Short wavelength modes, i.e., modes witk>R/a, the plasma, as follows. The steady state equation for flow as
are primarily flute interchange modes. These can be stabj balance between viscous stresses and an external Force,
lized by phase mixing from velocity shear. A conservativejs given by?
stability criterion is given by(42) or (43). . . . .

It is useful here to elaborate on the short wavelength 0=V -{nu[(Vu)+(Vu) ]} +F, (45
stability of the system. First, we recall that the entire calcu- _ . . - . N .
lation of this paper has been based on the MHD ordering, b)‘there"ﬂ's :[he viscosity. ,If we leu=6r{} in this equation,
which we mean we are considering situations where the ioRNd letF=6F 4, we obtain

Larmor radius is very small, i.ep;<a. Thus, by “short d [n,u d

2
rdr(r Q)

wavelengths™ in (i) above, we mean wavelengths short - =—F,. (46)

dr

compared taa but much longer thap;. A second assump-
tion of MHD ordering is that the frequencies under consid-If = constant and-,#0, clearly Rayleigh’s criterion is
eration must be very low compared to the ion cyclotron fre-satisfied everywhere in the plasma.
quency and of order the sonic and Alfie frequencies. The Short wavelength mode stability is given K43). Now
upper bound in the frequencies is self-consistent with for CCPs, we need large Mach numbénd,.=3.5. Thus, it
<a. It is clear that stability of a magnetic confinement sys-is reasonable to assume thw§> R/L, in which case the
tem on the sonic and Alfwéc timescales must be established centrifugal term in(43) dominates ifn’ ~n/a. The stability
(lack thereof is tantamount to no equilibriim— this we  criterion then reduces to
have done in this paper. In addition, dissipative effects are
stabilizing for these ideal modes.

The MHD ordering, however, precludes consideration of

mode _stability at_frequencies lower than sonic/Atiefre- This condition may not be easy to implement for high tem-
quencies. In_ particular, the next n.atural frequency qowr‘scalﬁerature plasma sind@, will be large.[For typical fusion

in a magnetized plasma is the drift frequgnm,, which is parameters, I,) can be as large as 16The condition,
greater than or of ordgy;/a times the sonic frequency. OUr poyever, is based on a very conservative interpretation of a
paper has not dealt with this frequency scale. Drift modes iy hje calculatioh — a numerical simulation is in order.

a plasma can be destabilized because of dissipative effeCigye that a large aspect ratio is stabilizing. The reason large
(in contrast to the stabl_llzatlon tendency of dissipative effeCtSolSpeCt ratio is more stabilizing is because the stabilization
on the MHD modes discussed abav&hese modes, how-  ahhens when velocity sheaf!, overcomes the interchange

ever, have lower growth rates-(w,), peaking at shorter o.,ih from centrifugal acceleration: in particulst, scales
wavelengths {- p;), and do not lead to a catastrophic loss of ;4 14, for given V, while the growth ratey,, scales as

equilibrium — rather, they create small scale turbulence. Thq/(aR)uz for givenV. How much a toroidal magnetic field
latter turbulence leads to nontrivial heat loss from fusiong;qs in siabilizing the above is not known at present.
plasmas and has to be accounted for in transport consider-  Now it is possible that conditiof47) may not be satis-

ations. This is outside the scope of our paper. However, it i?ied, in which case short wavelength interchanges will be

worth noting here that the drift modes may be strongly stay e cinitated. There is, however, a major difference here than

bilized by the velocity shear we are considering. In brief, the;, (,xamaks — namely, for CCPs, the above interchange is

velqcity shear frequency[’, we cpqs_ider_ h_ere is larger than yriven byn’, as opposed tp’ for tokamaks. Thus, the in-
sonic frequencies and so, by definition, it is much larger thafe changes would lead to a flat density profile. This would
drift frequencies: if the interchanges can be stabilized, the,ot pe a fundamental limitation to achieving fusion energy
drift mode is very likely to be stabilized at the large velocity e ak even if a temperature gradient can be maintained. The
shears. latter may be much easier; if we considdB) asn’ —0, we

find the criterion for stability with respect 6’

InR,
(L/a)”

a
L

a

>

)In R, (47)

"

V. APPLICATION TO CENTRIFUGALLY CONFINED a
PLASMAS M2>| —

Ly

(48)

As has been observed elsewhéfehe centrifugal forces
from a supersonic rotating plasma can be used to effect co
finement along the magnetic field. This is one of the under!S
lying motivations to use CCPs for thermonuclear fusion. An- | /InR
other motivation is that the large velocity shear would 5> ™2 |
suppress instabilities, possibly even highly potent ideal s
MHD instabilities such as flute interchanges. In this paperSinceM2~12, this is quite reasonable.

At Lt~a, then the required elongation for maintenancéd of

(49
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In this paper, we have come to some conclusions regard=q. 47 may not be practical. Even so, the resulting instabil-
ing the stability of CCPs based on our model Dean Flowity will flatten only the density gradient but not the tempera-
calculation. Dean Flow has some characteristics that make itire gradient. The latter can be maintained in stable state for
a good model for CCPs — toroidal geometry, toroidally out-modest elongation&f. Eq. 49. From the viewpoint of fu-
ward centrifugal force, shear in angular frequency — and wesion, maintaining the temperature gradient is the critical re-
have added an artificial gravity to mimic the thermal accel-quirement.
eration forces arising from the field line curvature of CCPs.
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