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Stability of magnetohydrodynamic Dean Flow as applied to centrifugally
confined plasmas
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~Received 3 March 1999; accepted 21 June 1999!

Dean Flow is the azimuthal flow of fluid between static concentric cylinders. In a magnetized
plasma, there may also be radial stratification of the pressure. The ideal magnetohydrodynamic
stability of such a flow in the presence of a strong axial magnetic field and an added radial
gravitational force is examined. It is shown that both the Kelvin–Helmholtz instability and
pressure-gradient-driven interchanges can be stabilized if the flow is driven by a unidirectional
external force and if the plasma annulus is sufficiently thin~large aspect ratio!. These results find
application in schemes using centrifugal confinement of plasma for fusion. ©1999 American
Institute of Physics.@S1070-664X~99!01110-6#
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I. MOTIVATION

An idea revived recently is to use centrifugal forces
rotating plasma to augment magnetic confinement of ther
nuclear fusion plasmas.1,2 One possible configuration tha
employs centrifugal confinement is shown in Fig. 1. T
plasma rotates toroidally at supersonic speeds, thus loc
ing the plasma, from centrifugal forces, to the straight s
tion on the outboard side. Such a configuration is expecte
have at most a weak toroidal magnetic field — the poloi
field dominates.

The central question for the success of this scheme is
ideal magnetohydrodynamic~MHD! stability of the rapidly
rotating configuration. To this end, there are several con
erations that enter. We discuss these below:

~a! The predominant MHD instability is the flute, inte
change mode — there is no kink mode in the system si
there are no substantial parallel plasma currents.
Kelvin–Helmholtz instability is also a concern.

~b! The free energy for the interchange mode is the pr
sure gradient. This energy is released by the ‘‘gravitatio
acceleration’’ in the system, in particular the radially ou
ward centrifugal acceleration,rV2, as well as thermal accel
eration from the curvature of the field lines3 as they go from
the straight section to the insulators~see Fig. 1!. (V is the
angular frequency.! Because the straight section does n
contribute to the curvature, the magnitude of the avera
curvature acceleration is of order (cs

2/a)(a/L)5cs
2/L, where

cs is the sound speed; ion thermal speed. Thus, the com
bined effective gravity can be writtengeff→rV21cs

2/L.
~c! While the plasma rotation is destabilizing on accou

of rV2, the same rotation tends to stabilize the flute mod
there is shear in the angular frequency,4,5 dV/dr. To be sure,
this possibility constitutes an added motivation for the id
of centrifugal confinement.2 The key question remains
though, as to which of the competing effects, centrifu
acceleration versus rotation shear, prevails.

~d! The Kelvin–Helmholtz~KH! instability also has to
be considered. The free energy of the KH is the spatial va
tion in the angular frequency, especially the second der
3731070-664X/99/6(10)/3738/6/$15.00
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tive, d2V/dr2. This instability is potentially less serious tha
the interchange since, as is known from ordinary fluids,6,7 the
stability criterion is profile-dependent and, for reasona
profiles, the mode may be only weakly growing, that is u
stable from only nonideal effects such as viscosity.

~e! Finally, one important aspect of the MHD stability o
this situation, in contrast to ordinary fluids, is that the stro
magnetic field completely stabilizes wavenumbers paralle
the field. Thus, while the fastest growing modes in fluids
azimuthally symmetric rolls in the poloidal plane, in a
MHD plasma the only possible instabilities are flutes w
B•W ¹W '0. This feature makes MHD plasmas more stable th
unmagnetized fluids: in particular, conclusions cann
readily be drawn from ordinary fluid stability of, for in
stance, Dean Flow7 ~described further below!.

In this paper, we investigate in greater detail the abo
seemingly conflicting issues. To be sure, analytical and
merical calculations done to date, using simplified mode
suggest that velocity shear is a dominant influence and co
significantly suppress the interchange modes.2,5,8,9These cal-
culations also suggest that the KH is not a concern given
velocity profiles expected. A complete assessment of sta
ity, for the geometry of Fig. 1 for example, will have t
involve a three-dimensional~3D! MHD numerical simula-
tion. Work is in progress along these lines. For the pres
paper, we simplify the system somewhat and present an
lytical study that shows fairly convincingly that a large a
pect ratio system could be stabilized.

Our model problem is described in the next section. T
stability analysis is given in Sec. III. We summarize o
findings in Sec. IV and apply them to centrifugally confine
plasmas~CCPs! in Sec. V.

II. THE DEAN FLOW MODEL

The model we use to assess the stability of the system
Fig. 1 is the flow system known in fluid mechanics as De
Flow.7 This model is depicted in Fig. 2. Essentially, Fig. 2
the magnetic field of Fig. 1 straightened out; however,
have added a radially outward external gravitational force
8 © 1999 American Institute of Physics
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model the curvature in the field of Fig. 2. As discussed e
lier in part ~b! of Sec. I, the magnitude of this artificial grav
ity, g, is O(cs

2/L). Such ag force is not normally included in
Dean Flow as conventionally defined. The key feature
Dean Flow that distinguishes it from Couette Flow is that
equilibrium azimuthal flow, uW 5 ûV(r ), is zero at the
boundaries7 ~i.e., the boundaries are static and the flow
forced within the fluid!. Such a setup is relevant to centrifu
gally confined plasma schemes. In our model, we will
sume that the magnetic field is very strong: more precis
we will adopt the ordering

cs;V!VA ,

whereVA is the Alfvén speed. This is realistic for CCP pla
mas and analytically convenient since it renders the sys
two-dimensional (]/]z50) and incompressible, and allow
the use of the MHD reduced equations.

Given these assumptions, the governing equations
the well-known reduced equations of MHD.10 For the vari-
ablesn, the mass density,p, the pressure, andf, the flow
streamfunction, the equations are given by

FIG. 1. A possible magnetic configuration for a centrifugally confin
plasma.
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]t
1uW •¹W n50, ~1!

¹W •Fn
]

]t
¹W f G1nuW •¹W ¹2f1¹W nuW :¹W ¹W f5T21gW 3zW•¹W p, ~2!

]p

]t
1uW •¹W p50, ~3!

where

uW [ ẑ3¹W f, p[nT. ~4!

We have assumed that]z50, in which case the field is com
pletely specified byBW .B0ẑ, B05const. We have also as
sumed thatgW acts only on the pressure,p. In ordinary fluids,
gravitational forces act on the density. In a magnetiz
plasma, it is well-known that the ‘‘effective gravity’’ from
magnetic curvature terms acts on the pressure.3,11

From the above, the equilibrium of Fig. 2 is given by

BW .B0ẑ, ~5!

n5n~r !, p5p~r !, ~6!

uW 5 ûV~r !, V~r ![df/dr. ~7!

We will also use the angular frequencyV(r ), defined ac-
cording toV[rV.

III. STABILITY ANALYSIS

We now linearize~1!–~3! about the above equilibrium
We assume perturbations of the formn→n(r )
1ñ(r )exp@imu2ivt#. The resulting equations forñ, f̃, and
p̃, after some algebra, are

FIG. 2. A model for the configuration of Fig. 1 with an effective gravity,gW ,
modeling the field line curvature.
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v̄ñ1~m/r !n8f̃50, ~8!

v̄¹W •@n¹W f̃#1~m/r !~n f !8f̃5~m/r !@rV2ñ1gp̃/T#, ~9!

v̄ p̃1~m/r !p8f̃50, ~10!

where

f ~r ![~r 2V!8/r , ~11!

v̄[v2mV, ~12!

and primes denote differentiation with respect tor. The sys-
tem has to be solved subject to the boundary conditi
f̃(R)50, f̃(R1a)50. Here,R is the radius of the inne
cylinder anda is the width of the annulus.

We begin our stability analysis by first considering som
special cases.

A. Rayleigh’s theorem

In the limit n850 and p850, ñ and p̃ vanish and the
system reduces to the familiar Kelvin–Helmholtz eigenva
equation,6,7 viz.

v̄¹2f̃1~m/r ! f 8f̃50. ~13!

An important theorem, akin to Rayleigh’s inflexion-poi
theorem for plane parallel flow in fluids,6,7 is readily ob-
tained from~13! by constructing a quadratic form. Dividin
by v̄ and operating on~13! with *R

R1adr r f̃* , integrating by
parts, and using the homogeneous boundary conditions
obtain

^u¹W f̃u2&5K m f8uf̃u2

r v̄
L , ~14!

where^h&[*dr h. The imaginary part of~14! is

05gK m f8uf̃u2

r uv̄u2 L , ~15!

where we have usedv5v r1 ig. It follows that if gÞ0, f 8
must vanish somewhere in the domain. Conversely, the
tem is marginally stable iff 8Þ0, i.e.,

d

dr F1

r

d

dr
~r 2V!GÞ05.marginal stability. ~16!

Thus, the system is ideally stable iff 8Þ0, although it could
be unstable to nonideal modes mediated by viscosity.

B. Simple interchange mode

Now suppose thatn8 and p8 are both nonzero but tha
the angular frequency is constant. The only effect ofV, then,
should be to provide a centrifugal acceleration and the in
bility should resemble a Rayleigh–Taylor-type interchan
mode. Indeed, ifV5const., we obtain the system

v̄¹W •@n¹W f̃#12~m/r !n8Vf̃5~m/r !@rV2ñ1gp̃/T#,
~17!

v̄ñ1~m/r !n8f̃50, ~18!
s

e

e

s-

a-
e

v̄ p̃1~m/r !p8f̃50. ~19!

If we let m→` in ~17! and ~19!, the ansatzd/dr
!(m/r ) is valid and the system reduces to

v̄2¹2f̃→2~m/r !2@rV2n8/n1gp8/p#f̃, ~20!

from which we obtain the well-known ‘‘local dispersion re
lation’’ for the usual simple interchange11

v̄25rV2~n8/n!1g~p8/p!. ~21!

In what follows, we will examine the stability of the ful
system~8!–~10! by methods similar to the quadratic form
and the local dispersion shown above. For this paper,
have been unable to assess stability in the completely gen
case. Consequently, we will only present a stability analy
for the large aspect ratio limit (R/a)@1. In this limit, one
general observation may be made from~8!–~10!. Since R
@a, we may also assumed/dr@1/r in ~8!–~10!. In that
case, if we assume further thatm;O(1) and thatv;mV, it
is readily seen that the three~grouped! terms in~9! scale as

1:1:~a/R!. ~22!

Based on~22!, we will treat the right-hand-side~RHS! of ~9!
as a perturbation in the limitR/a@1.

Before proceeding, we note that the generalization of
quadratic form~14! can be readily obtained. We find

^nu¹W fu2&5K muf̃u2~n f !8v̄*

r uv̄u2 L
1K F rV2

unũ2

n8
1

gupũ2

Tp8
G v̄*

v̄
L , ~23!

where the second term on the RHS is a small term forR.
.a. Note that then8 and p8 terms in the denominators o
this term are not an issue, for asn8→0, n→̃0 asn8 @see Eq.
~8!#; likewise for p8→0, thus there is no singularity. Th
imaginary part of the quadratic form becomes

052gK muf̃u2~n f !8

r uv̄u2 L
1K F rV2

unũ2

n8
1

gupũ2

Tp8
G ImS v̄*

v̄
D L , ~24!

where we can substitute

ImS v̄*

v̄
D 52

2gv r

uv̄u2
.

C. Long wavelength modes for R/a@1

For the long wavelength orderingm;O(1), d/dr;1/a
~both for equilibrium as well as perturbed quantities!, and if
R@a, we may use the quadratic form~24! to assess stability
To do this, we write~24! as

g@A1B#50, ~25!
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whereB/A;O(a/R). Now if (n f)8Þ0, thenA is nonzero
andB may be neglected fora/R!1. It follows thatg50 to
all orders. Thus, we obtain the modified version of Ra
leigh’s theorem:

d

dr Fn

r

d

dr
~r 2V!GÞ05.marginal stability. ~26!

D. Short wavelength modes, m @1, for R/a@1

We now consider short wavelength modes,m@1, for a
large aspect ratio system. Form@1, we may make the ‘‘lo-
cal’’ ansatz udf̃/dru!(m/r )uf̃u, but d/dr on equilibrium
quantities;1/a. In that case~8!–~10! simplify to

d

dt
¹2f̃52V2

]

]u
S ñ

n
D 2

g

r

]

]u
S p̃

p
D , ~27!

d

dt S ñ

ñ
D 5S n8

nr D ]f̃

]u
, ~28!

d

dt
S p̃

p
D .S p8

pr D ]f̃

]u
, ~29!

whered/dt[]/]t1V]/]u and we have reverted to partia
derivatives. We will letr→R1x, thus,¹2→]x

21R22]u
2 .

As in a previous calculation,5 we now make the follow-
ing transformations

X5x, ~30!

j5u2Vt, ~31!

t5t. ~32!

In the new coordinates, we have

]

]t
¹2f̃52

V2

R

]

]j

ñ

n
2

g

R

]

]j

p̃

p
, ~33!

]

]t

ñ

n
5

n8

n

1

R

]f̃

]j
, ~34!

]

]t

p̃

p
5

p8

p

1

R

]f̃

]j
, ~35!

where

¹2[F S ]

]X
2V8t

]

]j D 2

1
1

R2

]2

]j2G . ~36!

In these coordinates,X is ignorable. The fastest growth rate
are obtained for]/]X50. We thus look for modes with
]/]X50. (]/]j) is also ignorable: we let]/]j→ im. We
then obtain

]

]t
@11~RV8t!2#

imf̃

R
52RV2

ñ

n
2

g

R

p̃

p
, ~37!

]

]t

ñ

n
5

n8

n

im

R
f̃, ~38!
-

]

]t

p̃

p
5

p8

p

im

R
f̃. ~39!

Eliminating ñ and p̃, we get forf̃

]2

]t2 @11~RV8t!2#f̃52FRV2
n8

n
1g

p8

p G f̃. ~40!

For RV2n8/n1gp8/p.0, the system is stable. For th
quantity negative, the system is unstable. As discusse
detail in Ref. 5, on short time scales,RV8t!1, the mode
grows exponentially as exp@ggt# with

gg5@2RV2n8/n2gp8/p#1/2. ~41!

On longer time scales,RV8t@1, the mode still grows but
only algebraically, asta. If viscosity and resistivity are in-
cluded, the algebraic growth is efficiently phase mixed
the velocity shear, resulting in stabilization. A ‘‘stability cr
terion’’ can be written ifRV8.gg . This is given by5

R2V82.gg
2 ln@Rm# ~42!

whereRm[ggr 2/m2(mh)1/2 is a Reynolds number.
Between~41! and~42!, we may now assess the stabili

of a system such as Fig. 1 if we letg→cs
2/L, for L@a.

Schematically, ifV85(RV)8;RV/a, we have the sche
matic stability criterion

R

a
.F a

Ln
1

1

Ms
2

R

L

a

Lp
G ln Rm , ~43!

whereLn is the density scale size,Lp is the pressure scal
size, L/a is the elongation, andMs[V/cs;RV/cs is the
Mach number. ForLn;a andLp;a, the centrifugal force is
the dominant destabilizing mechanism forMs

2.(R/L) while
the curvature gravitational force dominates forMs

2,R/L.
We will discuss all these in reference to CCPs in Sec. V

As a final remark, we note that the stability criterio
~42!, taken from the work in Ref. 4, is based on a ve
conservative interpretation of the mode growth. Only a n
merical simulation can quantify this condition in more rea
istic terms.

IV. SUMMARY OF FINDINGS

We have investigated the stability of Dean Flow
MHD in the limit of large aspect ratio. We can summari
our findings as follows:

~i! long wavelength modes, withm;O(1) to m
;O(R/a), are primarily KH-type modes. These can b
made marginally stable, to ideal perturbations, if the R
leigh criterion

d

dr Fn

r

d

dr
~r 2V!GÞ0, ~44!

is satisfied throughout the plasma. As we will show belo
this condition is achieved in Dean Flow and, therefore,
CCPs. It is possible that nonideal instability can occur, m
diated by viscosity.6,7 These instabilities are expected
grow at a rate of orderV/Rm

n , where Rm is the viscous
Reynolds number andn is a fractional power. This is suffi-
ciently slow, that a weak toroidal magnetic field,BT!Bp ,
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could be used to stabilize such instability since a toroi
magnetic field adds magnetic shear to the system which
vides stabilizing Alfvénic forces.11 The magnetic shear re
sults in a stabilizing frequency that scales as (BT /Bp)VA /L;
since the viscous KH will have a growth rate of orderV/Rm

n ,
it follows that a very weakBT will suffice sinceRm@1.

~ii ! Short wavelength modes, i.e., modes withm@R/a,
are primarily flute interchange modes. These can be st
lized by phase mixing from velocity shear. A conservati
stability criterion is given by~42! or ~43!.

It is useful here to elaborate on the short wavelen
stability of the system. First, we recall that the entire cal
lation of this paper has been based on the MHD ordering
which we mean we are considering situations where the
Larmor radius is very small, i.e.,r i!a. Thus, by ‘‘short
wavelengths’’ in ~ii ! above, we mean wavelengths sho
compared toa but much longer thanr i . A second assump
tion of MHD ordering is that the frequencies under cons
eration must be very low compared to the ion cyclotron f
quency and of order the sonic and Alfve´nic frequencies. The
upper bound in the frequencies is self-consistent withr i

!a. It is clear that stability of a magnetic confinement sy
tem on the sonic and Alfve´nic timescales must be establish
~lack thereof is tantamount to no equilibrium! — this we
have done in this paper. In addition, dissipative effects
stabilizing for these ideal modes.

The MHD ordering, however, precludes consideration
mode stability at frequencies lower than sonic/Alfve´nic fre-
quencies. In particular, the next natural frequency downs
in a magnetized plasma is the drift frequency,v* , which is
greater than or of orderr i /a times the sonic frequency. Ou
paper has not dealt with this frequency scale. Drift mode
a plasma can be destabilized because of dissipative ef
~in contrast to the stabilization tendency of dissipative effe
on the MHD modes discussed above!. These modes, how
ever, have lower growth rates (;v* ), peaking at shorter
wavelengths (;r i), and do not lead to a catastrophic loss
equilibrium — rather, they create small scale turbulence. T
latter turbulence leads to nontrivial heat loss from fus
plasmas and has to be accounted for in transport cons
ations. This is outside the scope of our paper. However,
worth noting here that the drift modes may be strongly s
bilized by the velocity shear we are considering. In brief,
velocity shear frequency,V8, we consider here is larger tha
sonic frequencies and so, by definition, it is much larger th
drift frequencies: if the interchanges can be stabilized,
drift mode is very likely to be stabilized at the large veloc
shears.

V. APPLICATION TO CENTRIFUGALLY CONFINED
PLASMAS

As has been observed elsewhere,1,2 the centrifugal forces
from a supersonic rotating plasma can be used to effect
finement along the magnetic field. This is one of the und
lying motivations to use CCPs for thermonuclear fusion. A
other motivation is that the large velocity shear wou
suppress instabilities, possibly even highly potent id
MHD instabilities such as flute interchanges. In this pa
l
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we have assessed the stability of CCPs with respect to i
MHD instabilities. Based on the Dean Flow model, we co
clude that long wavelength modes are stable for large as
ratio if the Rayleigh criterion is satisfied. The latter criterio
is, in fact, readily satisfied, for this is just the condition o
expects if the toroidal flow is driven by an external force
the plasma, as follows. The steady state equation for flow
a balance between viscous stresses and an external forcFW ,
is given by12

05¹W •$nm@~¹W uW !1~¹W uW !T#%1FW , ~45!

wherem is the viscosity. If we letuW 5 ûrV in this equation,
and letFW 5 ûFu , we obtain

d

dr Fnm

r

d

dr
~r 2V!G52Fu . ~46!

If m5 constant andFuÞ0, clearly Rayleigh’s criterion is
satisfied everywhere in the plasma.

Short wavelength mode stability is given by~43!. Now
for CCPs, we need large Mach numbers,2 Ms*3.5. Thus, it
is reasonable to assume thatMs

2.R/L, in which case the
centrifugal term in~43! dominates ifn8;n/a. The stability
criterion then reduces to

S R

a D.S a

Ln
D ln Rm . ~47!

This condition may not be easy to implement for high te
perature plasma sinceRm will be large. @For typical fusion
parameters, ln(Rm) can be as large as 16.# The condition,
however, is based on a very conservative interpretation
simple calculation5 — a numerical simulation is in order
Note that a large aspect ratio is stabilizing. The reason la
aspect ratio is more stabilizing is because the stabiliza
happens when velocity shear,V8, overcomes the interchang
growth from centrifugal acceleration: in particular,V8 scales
as 1/a, for given V, while the growth rate,gg , scales as
1/(aR)1/2, for given V. How much a toroidal magnetic field
aids in stabilizing the above is not known at present.

Now it is possible that condition~47! may not be satis-
fied, in which case short wavelength interchanges will
precipitated. There is, however, a major difference here t
in tokamaks — namely, for CCPs, the above interchang
driven byn8, as opposed top8 for tokamaks. Thus, the in
terchanges would lead to a flat density profile. This wou
not be a fundamental limitation to achieving fusion ener
break even if a temperature gradient can be maintained.
latter may be much easier; if we consider~43! asn8→0, we
find the criterion for stability with respect toT8

Ms
2.S a

LT
D ln Rm

~L/a!
. ~48!

If LT;a, then the required elongation for maintenance ofT8
is

L

a
.S ln Rm

Ms
2 D . ~49!

SinceMs
2;12, this is quite reasonable.



ar
ow
ke
ut
w
el
s

n
on
th
ed
1
si

ta

lv
in

le
e

pe
1

il-
a-
for

re-

th-
gy.

e

. R.

3743Phys. Plasmas, Vol. 6, No. 10, October 1999 Stability of magnetohydrodynamic Dean Flow as applied . . .
In this paper, we have come to some conclusions reg
ing the stability of CCPs based on our model Dean Fl
calculation. Dean Flow has some characteristics that ma
a good model for CCPs — toroidal geometry, toroidally o
ward centrifugal force, shear in angular frequency — and
have added an artificial gravity to mimic the thermal acc
eration forces arising from the field line curvature of CCP
The Dean Flow model has the shortcoming that it does
account for the tapered, centrifugally confined pressure al
the field line that is the case for a CCP — in a CCP,
centrifugal forces will confine pressure so that it is localiz
to the straight portion of the magnetic field shown in Fig.
This and possibly other geometric effects need to be con
ered before a definitive assessment of CCP stability can
made. In addition, given the conservative nature of the ‘‘s
bility criterion’’ used in arriving at~42!, it is clear that a
numerical simulation of a CCP plasma is needed to reso
the stability question more quantitatively. Work is
progress along these lines.

In summary, CCPs at supersonic speeds may be stab
maintenance of pressure gradients to all ideal MHD mod
for modest elongation and large aspect ratio. A large as
ratio is generally stabilizing since velocity shear scales asa
while destabilizing accelerations scale as 1/R. It is possible
that the large aspect ratios required to stabilize all modes~cf.
d-

it
-
e
-
.
ot
g

e

.
d-
be
-

e

to
s,
ct
/

Eq. 47! may not be practical. Even so, the resulting instab
ity will flatten only the density gradient but not the temper
ture gradient. The latter can be maintained in stable state
modest elongations~cf. Eq. 49!. From the viewpoint of fu-
sion, maintaining the temperature gradient is the critical
quirement.
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