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Velocity shear stabilization of interchange modes in elongated
plasma configurations
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University of Maryland, Institute for Plasma Research, College Park, Maryland 20742
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Interchange modes in magnetized plasmas can be stabilized by cross-field velocity shear. This effect
is re-examined for systems with elongated cross-sections. For large elongations,E, the interchange
growth drops asE21/2 while the velocity shear scale is still determined by the short scale size.
Consequently, velocity shear stabilization of elongated plasmas is shown to be more efficient by
E21/2. © 1999 American Institute of Physics.@S1070-664X~99!02310-1#
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I. INTRODUCTION

It is well recognized that velocity shear has a stro
stabilizing influence on the gravitational interchange insta
ity of fluids and plasmas.1,2 The interchange mode taps i
energy from density gradients inverted with respect to
gravitational field, or, in the case of plasmas, pressure gr
ents inverted with respect to curvature of the confining m
netic field. If, however, the ambient fluid is flowing tran
verse to the pressure stratification, and there is a shear in
flow in the direction of stratification, the interchange mo
can be stabilized. A stability criterion is given by2

V8.gg@ l nR#1/2. ~1!

Here,V8 is the shear in the flow velocity,gg is the growth
rate of the interchange mode, andR is a Reynolds number
essentially the ratio ofgg to a visco-resistive dissipation rate
The stability criterion essentially says that the shearing
must exceed the growth rate;3,4 the logarithmic factor reflects
the fact that the stabilization ultimately stems from a pha
mixing process in which the viscosity and resistivity play
essential, albeit weak, role.2

Velocity shear stabilization of the interchange mode h
important implications for the stability of thermonuclear f
sion plasmas. Experimental evidence and its theoretical b
show that such stabilization is operative in hot plasmas.5 Fu-
sion experiments, utilizing the stabilizing effects of veloc
shear, are planned or under construction.6–8 In this paper, we
address whether and how plasma shaping can aid the s
lization from velocity shear. In particular, we address t
effect of elongation on the velocity-shear stabilization of t
interchange.

To orient the discussion, consider theZ pinch shown in
Fig. 1. This is an elongatedZ pinch with dimensionsa andb.
As is well-known,Z pinches are unstable to the interchan
~the ‘‘sausage’’ instability!. The interchange growth rate
gg , scales asgg;cs /(Lnr c)

1/2, wherecs is the sound speed
r c is the radius of curvature, andLn is the density gradien
scale size. In the case of a roughly circular cross section~i.e.,
a5b), we haver c;a andLn;a in which casegg;cs /a. If

a!Electronic mail: hassam@glue.umd.edu
3771070-664X/99/6(10)/3772/6/$15.00
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there is an axial flow~see Fig. 1! then the velocity shear,V8,
scales asV/a. Using these in Eq.~1!, we may re-express the
stability criterion as

Ms.@ l nR#1/2, ~2!

where Ms[V/cs is the Mach number. For typical fusio
parameters, the Reynolds number, based on classical t
port, is of orderR;108. This means that a critical Mach
number of about 4.3 would be necessary for stabilization
is important to state that criterion~1! is arrived at
conservatively2 — the actual Mach number requireme
could be somewhat less. Nonetheless, supersonic flow se
to be required.

The interchange growth rate, however, weakens with
creasing elongationE[b/a. The question then arises as
how E.1 affects criterion~1!. We provide here a heuristic
estimate, to be confirmed by the calculation in this pap
The interchange growth rate is reduced byE.1 as follows:
In the ‘‘straight portion’’ of the elongated field shown in Fig
1, the radius of curvature,r c , is weak, scaling asr c;b. In
the ‘‘curved’’ portion, r c;a. The average curvature ca
then be estimated by

^~1/r c! &

^1&
;

~~1/b! 3b!1~~1/a! 3a!

~a1b!
, ~3!

where ^ & denotes flux surface averaging and, for instan
(1/b) is multiplied byb to take into account the length of th
straight portion. In effect, then,r c;(a1b);b, for b@a.
The density scale,Ln , scales asa. Thus, gg→cs /(ab)1/2.
The velocity shear scale, however, always scales with
smaller scale size, i.e.,V8;V/a. Using these in criterion~1!,
we estimate the critical Mach number for stabilizing elo
gated interchanges to be

Ms.F l nR

E G1/2

. ~4!

For an elongation ofE54, the critical Mach number is
halved toMs.2.1. To reiterate, largeE lowers the inter-
change growth rate but velocity shear is always based on
smaller scale, leading to an overall reduction of the Ma
number requirement byE1/2.
2 © 1999 American Institute of Physics
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In this paper, we present an analytical calculation t
confirms the foregoing heuristic estimate. In the next sect
we set up the model and the governing equations. In Sec
we linearize the equations about the flowingZ-pinch equilib-
rium. In Sec. IV, we discuss the long wavelength stabili
wavelengths;O(a): These are primarily velocity shea
driven Kelvin–Helmholtz modes. In Sec. V, we address
short wavelength interchange modes. In Sec. VI, we disc
the extension of our results to other plasma shapes. We
clude in Sec. VII.

II. EQUATIONS

We will solve for the stability of the interchange in a
elongatedZ-pinch such as the one depicted in Fig. 1. W
assume that the magnetic field is only poloidal, given by

BW 5 ẑ3“c. ~5!

For simplicity, we will assume that the magnetic energy
dominant, i.e., we assume that the plasmab is small and the
kinetic energy is small, viz.

~ 1
2!nMu2;~ 3

2!p!B2/2, ~6!

whereu is the flow velocity,n is the density,M is the ion
mass, andp[nT is the pressure with temperatureT. This
assumption, along with the assumption of no toroidal fie
simplifies the analysis because the interchange between
tubes is perfect in the sense of being approximately elec
static. The assumption of large magnetic field is easily re
ized in low b systems, for example in the case where
central axial conductor and/or external conductors carry
currents that generate the magnetic field.6 In the case of a
field-reversed configuration,9 the analysis is strictly valid

FIG. 1. A Z-Pinch with elongated cross section.
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only for the outer surfaces where the pressure is small. No
theless, the conclusions of interest are unlikely to cha
qualitatively.

In the electrostatic limit, the magnetic field is given, f
all times, by Eq.~5! and the equilibrium equation forc in the
plasma is

¹2c.0. ~7!

An important quantity is the radius of curvature,k[b̂•“b̂,
whereb̂[B/B. This can be expressed in terms ofB by the
equilibrium relationship

k•“c5B]B/]c. ~8!

Within the electrostatic assumption, the governing eq
tions are

]n/]t1“•~nu!50, ~9!

]p/]t1u•“p1gp“•u50, ~10!

nMB•~]u/]t1u•“u!52B•“p, ~11!

B•“f50, ~12!

^“•¤'&50, ~13!

where

u[b̂ui1B3“f/B2, ~14!

¤'[B3@nM~]u/]t1u•“u!1“p#/B2, ~15!

^ f &[ R ~dl /B! f . ~16!

Equations~9!–~13! constitute a closed set for the four var
ablesn, p, ui , andf, with u' and ¤' defined by Eqs.~14!
and ~15!, B given by Eq.~5!, and the flux surface averag
defined by Eq.~16!. SinceB is specified byc, a convenient
coordinate system is (c,l ,z), wherel is the distance along
a closed field line. A useful identity is obtained by the vo
ume average over a flux tube using Gauss’ theorem

^“•A&[
]

]c
^“c•A&1

]

]z
^z•̂A&. ~17!

An axisymmetric equilibrium with axial flow, obtained
from Eqs.~9!–~13!, is given by:

u5 ẑV~c!, V~c![2df/dc, ~18!

p5p~c!, ~19!

n5n~c!. ~20!

III. LINEARIZED EQUATIONS

We now linearize Eqs.~9!–~13! about the equilibrium
given in Eqs.~18!–~20!. The linearized system for the pe
turbationsf̃, p̃, andũi can be written as
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d

dt F ]

]c
F ^nM&

]f̃

]c
G1

]

]zF K nM

B2 L ]f̃

]z G G2
d

dc F ^n&
dV

dc G ]f̃

]z

522K k•“c

B2

] p̃

]z L , ~21!

dp̃

dt
1p8F

]f̃

]z
1gpB•“S ũi

B
D 50, ~22!

nM
dũi

dt
52

B

B
•“ p̃, ~23!

where

d

dt
[

]

]t
1V

]

]z
, ~24!

F[12
2gp

B2

k•“c

p8
, ~25!

and primes denote differentiation with respect toc. In ob-
taining Eq. ~21!, we have used the lowb approximation,
specifically, u“3Bu!u“'Bu. We have also used Eq.~17!
and made repeated use of Eqs.~8!, ~12!, and~14!.

As written above, Eqs.~21!–~23! describe all wave-
lengths, from]z;1/b to ]z large. The various modes that ca
be obtained include the interchange modes as well as
Kelvin–Helmholtz.10,11 In particular, the important inter
change term is thek•“c term in Eq. ~21!, and the term
responsible for the Kelvin–Helmholtz~KH! is thed2V/dc2

term in Eq.~21!. In this paper, we will investigate the sho
wavelength~interchange! modes fairly thoroughly; the long
wavelength stability is more difficult to assess. We will a
sess the latter only in the case of large elongation,E@1.

IV. LONG WAVELENGTH MODES

The long wavelength modes may be driven both byV9
as well asn8, i.e., they are a coupling of the KH and inte
change modes. A complete stability analysis involves so
ing the entire system@Eqs. ~21!–~23!# as is — this is in-
volved. We restrict ourselves to the special case of la
elongation, i.e.,b@a. In this limit, we expect the Kelvin–
Helmholtz growth rate to scale asgKH;V/a. However, the
sound frequency,gs , scales asgs;csub̂•“u;cs /b. Thus,
gs!gKH , in which case one may neglectũi in Eq. ~22!. For
the resulting system, we assume the eikonal solutionf̃

→f̃ exp@2ivt1ikz#. Equation~21!, when divided byv̄, be-
comes

d

dc
F ^n&

df̃

dc
G2k2K n

B2L f̃52
^~nV8!8&kf̃

v̄

12kK k•“c

B2

p̃

v̄
L , ~26!

and Eq.~22! becomes

v̄ p̃'p8Fkf̃, ~27!
he

-

-

e

where v̄[v2kV. We now operate on Eq.~26! with
*dcf̃* , where the integral is taken over the entire volum
By an integration by parts, using homogenous boundary c
ditions onf̃, we obtain the quadratic form

H ^n&Udf̃

dc
U2

1k2K n

B2L Uf̃U2J
5H ^~nV8!8&uf̃u2

uv̄u2
v̄* J 22H K F

k•“c

B2 L u p̃u2

p8F2

v̄* 2

uv̄u2J ,

~28!

where we have used Eq.~27! and the fact thatp̃/F is a
function of c, and we have defined$ f %[*dc f . We have
assumed thatv̄Þ0, i.e., we assumev is not real. We now
take the imaginary part of Eq.~28!. We get

gF H k^~nV8!8&uf̃u2

uv̄u2 J 14v r H K Fk•“c

B2 L u p̃u2

p8F2

1

uv̄u2J G50,

~29!

where we have letv[v r1 ig. Now, asb→`, the first term
remains finite but, as argued in the Introduction, the aver
curvature^k•“c/B2&→0 as 1/b: thus the second term be
comes small for largeb. If ( nV8)8Þ0 anywhere in the
plasma, then the first term is nonzero and the above equa
cannot be satisfied for any value ofuv r u&V/a ~sincegÞ0
has been assumed!. The only possibility then is thatg50, to
all orders in (a/b). Thus, we conclude that for (nV8)8Þ0,
long wavelength modes are stable ifa!b. This condition is
known as Rayleigh’s Criterion10,11 and it is readily satisfied
for flow driven by a unidirectional external force.

V. SHORT WAVELENGTH MODES

In the limit of ]z@1/a, all the perturbed variables hav
variations inc andz which are of short scale compared wi
a. In that case, several terms in Eq.~21! can be neglected
including the KH term. Making these approximations, E
~21! becomes

nM
d

dt
^¹2f̃&.22K k•“c

B2

] p̃

]z L , ~30!

¹2[]c
21B22]z

2. ~31!

Before solving the system~30!, ~22!, and ~23! for the V8
stabilized interchange, we examine the caseV50 first.

A. Interchanges without flow shear

We assume an eikonal solutionf̃→f̃ exp(2ivt1ikz).
As k→`, it can be shown thatu]cu!k, i.e., a local disper-
sion is obtainable. In that case, Eqs.~30! and ~22! become

nMv^1/B2&kf̃522K k•“c

B2
p̃L , ~32!

@v21cs
2B•“~B22B•“ !# p̃5vp8Fkf̃, ~33!
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wherecs
2[gp/nM and we usedũi from Eq. ~23! into Eq.

~22! to get the second order magnetodifferential equat
@Eq. ~33!#. The system~32!–~33! is hard to solve in general
The essential behavior can be discerned by taking two
ficial limits, namely,cs→0 andcs→`. For cs→0, the sec-
ond term on the left-hand-side of Eq.~33! can be neglected
The resulting expression forp̃ inserted into Eq.~32! yields
the local dispersion relation

v2.22S p8

nM D K k•“c

B2
FL /^1/B2&, cs→0. ~34!

As discussed earlier, thek•“c average scales as 1/b yield-
ing v2;cs

2/ab. The system is unstable forp8,0. ‘‘Com-
pressional stabilization’’ is obtained from theF term.12

For cs→`, we have, from Eq.~33!, p̃→ p̃(c), to lowest
order. Now, annihilating theB•“ term in Eq.~33! by a flux
surface average, we get

v p̃~c!.p8kf̃,F./,1.. ~35!

Inserting this into Eq.~32!, we obtain the local dispersio
relation

v2.22S p8

nM D ^~k•“c/B2! &

^1/B2&

^F&

^1&
, cs→`, ~36!

which scales similarly to the dispersion~34!.
We have thus obtained useful information on the us

interchange.

B. Interchanges with flow shear

We now include the effects of flow shear. For simplicit
we will only consider the artificial limitcs→0. In this case,
the relevant equations are Eqs.~30! and ~22! with ũi set to
zero. We assess stability in this case by employing the m
ods of Ref. 2. Accordingly we first make a coordinate tra
formation from (c,z,t) to (x,z,t) defined by

x5c ~37!

z5z2V~c!t, ~38!

t5t. ~39!

The transformed equations are

nM
]

]t
^¹2f̃&522K k•“c

B2

] p̃

]z L , ~40!

] p̃

]t
.2p8F

]f̃

]z
, ~41!

¹2[~]x2V8t]z!
21B22]z

2. ~42!

We now note thatx andz are ignorable in the local approx
mation. Thus, we let]z→ ik, and we let]x→0 since the
fastest growing interchanges are ones with]x50. Eliminat-
ing p̃ in the set~40! and ~41!, we obtain an evolution equa
tion for f̃
n

ti-

l

h-
-

]2

]t2
@^V82t21B22&f̃#52K k•“c

B2
FL S p8

nM D f̃. ~43!

This equation can be solved exactly in terms of Legen
functions.2 However, the following is readily seen: For ear
times,V82t2!^B2&/^1&, an exponentially growing solution
is obtained~if p8,0) with a growth rate given by Eq.~34!.
However, in the opposite limit of long times,V82t2

@^B2&/^1&, the mode grows only algebraically@the t→`
limit of Eq. ~43! is an equidimensional equation#. Conse-
quently, mode growth is retarded considerably. If visco
and resistive dissipation were included in the analysis a
Ref. 2, the algebraically growing mode phase mixes rapi
and damps. A conservative estimate of negligible grow
leads to the ‘‘stability criterion’’2

S dV

dc D 2

.2l nRU p8

nM K k•“c

B2 L /^1&U . ~44!

This scales, fora!b, as

S V

a D 2

.
2cs

2

ab
l nR, ~45!

or

Ms.F2l nR

E G1/2

. ~46!

As argued in the Introduction, the Mach number requirem
goes down asE1/2 if E is large.

VI. OTHER CONFIGURATIONS

The calculation herein has been done for an elonga
plasma such as the one in Fig. 1. The conclusion, howeve
general in that plasma elongation generally aids veloc
shear stabilization. As an example of practical interest, c
sider the configuration of Fig. 2. In this system, plasma
contained along the lines by insulators as end-plates iny.
Insulators are necessary, if there is an axial flow, to prev
‘‘line-tying.’’ This system may be unstable to the inte
change on account of the magnetic curvature~although the
average curvature needs to be evaluated!. Clearly, however,
an elongated system is better stabilized by velocity sh
While the example of Fig. 2 is somewhat contrived, su
systems are practical ifz is periodic, as in a toroidal geom
etry. In that case, the toroidal rotation plays the additio
role of centrifugally confining the plasma to the outboa
side.6 The centrifugally confined plasma now makes for
practical fusion device. Evidently, elongated centrifuga
confined systems would be more stable.

While the latter statement is essentially correct, it
worthwhile to place it in a fuller context. The same, toro
dally outward, centrifugal force that provides centrifug
confinement also tends to increase the drive for intercha
instabilities. That is to say, the effective ‘‘gravity’’ tha
drives the interchange modes now includes, in addition to
magnetic curvature, the centrifugal force from rotation.
particular, for supersonic flows, the gravity is apparen
dominated by the centrifugal force. The latter effects ha
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been examined in detail in Ref. 13 — we summarize
results here. Primarily, it important to point out that the ce
trifugal acceleration acts only on the mass density of
plasma, as opposed to the acceleration from magnetic cu
ture which acts on the plasma pressure. Thus, as far as
perature gradients go, centrifugal effects are not opera
and, as such, the conclusions of the present paper appl
elongation should be a stabilizing effect for maintaining te
perature gradients. Now as far as density gradients go,
have shown13 that the stabilization that comes from elong
tion is now replaced by a corresponding stabilization t
comes from large aspect ratio. This correspondence is q
close in that, for fixed peak rotation speed, the centrifu
gravity decreases inversely with major radiusR, as 1/R,
while the velocity shear, again for fixed peak rotation spe
still scales inversely with the minor radiusa, as 1/a. Thus,
for both density as well as temperature gradients, the gen
idea that velocity shear continues to act over the minor
dius while destabilizing effects can be nudged downward
geometrical shaping, is operative.

Finally, we point out that the entire discussion in th
paper is focused on systems in which there is no magn
shear. In particular, the basic criterion that motivates the
per, Eq.~1!, was calculated for a magnetic configuration w
no magnetic shear, in which case the ideas of shearing r
versus growth rates and phase mixing as being the und
ing physics of stabilization are relatively easy to define. S
tems without magnetic shear are of interest in devices
magnetic fusion such as field-reversed-configurations,
poles, and centrifugally confined plasmas. If there is m

FIG. 2. An open system with an elongated poloidal field configuration
e
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netic shear in the system, however, then the idea behind
paper, that stabilization results from plasma shaping, mus
revisited. This is because the operative physics of velo
shear stabilization in magnetic sheared systems is sig
cantly different from that underlying criterion~1!. To give
one example,14 velocity shear coupled with the magnet
shear causes convection cells to propagate along the m
magnetic field: If the mean field moves to and from regio
of favorable and unfavorable gravity, the stabilization com
from the average time spent by the cell in the good grav
region, rather than from the phase mixing physics that is
importance in criterion~1!. Clearly, how shaping affects thi
physics needs examination.

VII. CONCLUSION

Velocity shear stabilization of plasma instabilities is d
sirable in fusion devices. For lowb systems with insignifi-
cant magnetic shear, the strongly unstable ideal modes
the interchange modes: These modes can be stabilize
velocity shear providedV8 exceeds the growth rategg by a
factor of @ l nR#1/2, R being the Reynolds number. Thi
translates to Mach numbers of the order of@ l nR#1/2, ;4 for
fusion parameters. Any reduction in this critical Mach num
ber is desirable. One way of achieving this reduction, sh
ing the plasma cross section, is investigated in this paper
examining elongated plasmas, we have shown that the M
number requirement is no longer independent of geome
in fact scales asE21/2: The critical Mach number is of
O@(l nR/E)1/2#. Our analysis applies to short waveleng
interchanges. Long wavelength analysis indicates that
long as the flow profiles do not have an inflexion point, i.
(d/dc)@ndV/dc#Þ0 @Rayleigh’s theorem#, the system
should be stable for 1!E. Such ‘‘Rayleigh-flow’’ profiles
always obtain for flows driven by a unidirectional extern
force.

The conclusion of this paper would be best borne out
three-dimensional magnetohydrodynamic simulations of
terchange unstable elongatedZ-pinches. Work along these
lines is in progress.
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