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Velocity shear stabilization of interchange modes in elongated
plasma configurations
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Interchange modes in magnetized plasmas can be stabilized by cross-field velocity shear. This effect
is re-examined for systems with elongated cross-sections. For large elonggtitims interchange
growth drops a2 while the velocity shear scale is still determined by the short scale size.
Consequently, velocity shear stabilization of elongated plasmas is shown to be more efficient by
E~'2  © 1999 American Institute of Physid$51070-664%99)02310-1

I. INTRODUCTION there is an axial flowsee Fig. 1then the velocity shea¥/’,

, . , scales a¥//a. Using these in Eq.1), we may re-express the
It is well recognized that velocity shear has a Strongstability criterion as

stabilizing influence on the gravitational interchange instabil-

ity of fluids and plasmas? The interchange mode taps its M>[/nR]Y?, 2
energy from density gradients inverted with respect to a _ _ )
gravitational field, or, in the case of plasmas, pressure gradivhere Ms=Vi/cs is the Mach number. For typical fusion
ents inverted with respect to curvature of the confining magParameters, the Reynolds number, based on classical trans-
netic field. If, however, the ambient fluid is flowing trans- POrt. is of orderR~1C°. This means that a critical Mach
verse to the pressure stratification, and there is a shear in tifsimber of about 4.3 would be necessary for stabilization. It
flow in the direction of stratification, the interchange modelS important to state that criterion(l) is arrived at

can be stabilized. A stability criterion is given by conservatively — the actual Mach number requirement
could be somewhat less. Nonetheless, supersonic flow seems
V'>yg[/nR]Y2 (1)  to be required.

The interchange growth rate, however, weakens with in-
Here,V’ is the shear in the flow velocityy, is the growth  creasing elongatioE=b/a. The question then arises as to
rate of the interchange mode, aRds a Reynolds number, how E>1 affects criterion(1). We provide here a heuristic
essentially the ratio of to a visco-resistive dissipation rate. estimate, to be confirmed by the calculation in this paper.
The stability criterion essentially says that the shearing ratdhe interchange growth rate is reducediby 1 as follows:
must exceed the growth raté;the logarithmic factor reflects  In the “straight portion” of the elongated field shown in Fig.
the fact that the stabilization ultimately stems from a phased, the radius of curvature,, is weak, scaling as,~b. In
mixing process in which the viscosity and resistivity play anthe “curved” portion, r.~a. The average curvature can

essential, albeit weak, rofe. then be estimated by

Velocity shear stabilization of the interchange mode has
important implications for the stability of thermonuclear fu- (1))  ((1/b) Xb)+((1/a) xa) 3
sion plasmas. Experimental evidence and its theoretical basis (1) (a+h) '

show that such stabilization is operative in hot plasfias: ) )
sion experiments, utilizing the stabilizing effects of velocity Where() denotes flux surface averaging and, for instance,

shear, are planned or under construcfichin this paper, we (1/b_) is multi_plied byb to take into account the length of the
address whether and how plasma shaping can aid the stai§if@ight portion. In effect, them.~(a+b)~b, for b>l%-
lization from velocity shear. In particular, we address the] Ne density scalel.,, scales as. Thus, yg—cs/(ab)™

effect of elongation on the velocity-shear stabilization of theN€ Velocity shear scale, however, always scales with the
interchange. smaller scale size, i.eV,’ ~V/a. Using these in criteriofil),

To orient the discussion, consider tHepinch shown in ~ We est'imate the critical Mach number for stabilizing elon-
Fig. 1. This is an elongate@lpinch with dimensions andb. ~ 9atéd interchanges to be
As is well-known,Z pinches are unstable to the interchange /nRY2
(the “sausage” instability. The interchange growth rate, M>| —
Yq, Scales as/g~c3/(Lnrc)1/2, wherec is the sound speed, E
re is the radius of curvature, and, is the density gradient £, gn elongation ofE=4, the critical Mach number is
scale size. In the case of a roughly circular cross sectien  p4ved toM>2.1. To reiterate, larg& lowers the inter-
a=b), we haver.~a andL,~a in which casey,~Cs/a. It change growth rate but velocity shear is always based on the
smaller scale, leading to an overall reduction of the Mach
3Electronic mail: hassam@glue.umd.edu number requirement b2,
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only for the outer surfaces where the pressure is small. None-
theless, the conclusions of interest are unlikely to change
qualitatively.

In the electrostatic limit, the magnetic field is given, for
all times, by Eq(5) and the equilibrium equation faf¥ in the

plasma is

V2y=0. (7)
Viv) . - . -
An important quantity is the radius of curvature=b- Vb,
/ whereb=B/B. This can be expressed in terms®by the
b equilibrium relationship
k- Vi=BoBl . (8)
Within the electrostatic assumption, the governing equa-

tions are
anlgt+V-(nu)=0, 9
oplat+u-Vp+ypV-u=0, (10
a nNMB-(du/dt+u-Vu)=—B-Vp, (11)

FIG. 1. A Z-Pinch with elongated cross section.

B-V¢=0, (12
(V-3,)=0, (13

In this paper, we present an analytical calculation that
confirms the foregoing heuristic estimate. In the next sectionwhere
we set up the model and the governing equations. In Sec. I,

we linearize the equations about the flowiginch equilib- u=bu;+BxV¢/B? (14
rium. In Sec. IV, we discuss the long wavelength stability, )
wavelengths~0O(a): These are primarily velocity shear ). =BX[nM(du/dt+u-Vu)+Vp]/B7, (19
driven Kelvin—Helmholtz modes. In Sec. V, we address the

short wavelength interchange modes. In Sec. VI, we discuss  (f)= % (d/1B)f. (16)

the extension of our results to other plasma shapes. We con-

clude in Sec. VII. Equations(9)—(13) constitute a closed set for the four vari-

ablesn, p, u, and ¢, with u, andyj, defined by Eqs(14)
and (15), B given by Eq.(5), and the flux surface average
defined by Eq(16). SinceB is specified byy, a convenient
We will solve for the stability of the interchange in an coordinate system is/,/,z), where/ is the distance along
elongatedZ-pinch such as the one depicted in Fig. 1. We@ closed field line. A useful identity is obtained by the vol-
assume that the magnetic field is only poloidal, given by ~Ume average over a flux tube using Gauss’ theorem

II. EQUATIONS

B=zX V. (5)

For simplicity, we will assume that the magnetic energy is
dominant, i.e., we assume that the plasggnia small and the
kinetic energy is small, viz.

(V-A}E(%/(Vzﬂ-A)Jr %(?A). 17)

An axisymmetric equilibrium with axial flow, obtained
from Eqgs.(9)—(13), is given by:

1 2__(3\p<R2

i (p=E 2 O umavin, vin=-daray, 19
whereu is the flow velocity,n is the densityM is the ion
mass, andp=nT is the pressure with temperatufe This p=p(¢), (19
assumption, along with the assumption of no toroidal field,
simplifies the analysis because the interchange between flux N=n(#). (20

tubes is perfect in the sense of being approximately electro-

static. The assumption of large magnetic field is easily realt||. LINEARIZED EQUATIONS

ized in low B systems, for example in the case where a

central axial conductor and/or external conductors carry the We now linearize Eqs(9)—(13) about the equilibrium
currents that generate the magnetic ffeld. the case of a given in Egs.(18)—(20). The linearized system for the per-
field-reversed configuratiohthe analysis is strictly valid turbationsé, p, andﬁ” can be written as
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d| o ap| o]/ nM\ a¢ d dVv] a¢
gl 22 2 (T2 2 |- i S 22
dt| gy | dz|\ B2/ 9z dy dif| 9z
K- Vi dp
——2<W>. (21)
dp 399 uj)
u__B o 23
@B vP 23
where
d -~ J J o4
at-at vz @
2 -V
Fe1_ YP Kk ‘101 (25)
BZ p/

and primes denote differentiation with respectitoIn ob-
taining Eqg. (21), we have used the loyB8 approximation,
specifically, |V X B|<|V ,B|. We have also used E¢17)
and made repeated use of E(®), (12), and(14).

As written above, Eqs(21)—(23) describe all wave-
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where w=w—kV. We now operate on Eq(26) with

fdy*, where the integral is taken over the entire volume.
By an integration by parts, using homogenous boundary con-

ditions on'$, we obtain the quadratic form
dé 2 n
EEREIEy
ININ| TH|2
_[«av)iig) ;*}_2|<F > ]
|w|?
(28)

where we have used E@27) and the fact thap/F is a
function of ¢, and we have definefff}=/dyf. We have
assumed thab#0, i.e., we assume is not real. We now
take the imaginary part of E¢28). We get
} } - O'
(29)

¢

|‘b|2 5*2

p'F?lw]?

K-V
82

pl* 1
p'Fol?

Fr- Vi
BZ

k<<nV'>'>|?iS|2] +4w,[< >

|o]?
where we have leb=w, +i7y. Now, asb— oo, the first term
remains finite but, as argued in the Introduction, the average
curvature( k- V ¢/B?)—0 as 1b: thus the second term be-

lengths, fromy,~ /b to 4, large. The various modes that can comes small for largeo. If (nV')'#0 anywhere in the
be obtained include the interchange modes as well as tHlasma, then the first term is nonzero and the above equation

Kelvin—Helmholtz!%* In particular, the important inter-
change term is thee- V¢ term in Eq.(21), and the term
responsible for the Kelvin—HelmholtKH) is thed?V/dy?
term in Eqg.(21). In this paper, we will investigate the short
wavelength(interchange modes fairly thoroughly; the long
wavelength stability is more difficult to assess. We will as-
sess the latter only in the case of large elongation,l.

IV. LONG WAVELENGTH MODES

The long wavelength modes may be driven both\y
as well asn’, i.e., they are a coupling of the KH and inter-
change modes. A complete stability analysis involves solv
ing the entire systenfiEgs. (21)—(23)] as is — this is in-

cannot be satisfied for any value faf,|<V/a (since y#0
has been assumed he only possibility then is thag=0, to
all orders in @/b). Thus, we conclude that fom{/’)’ #0,
long wavelength modes are stableikb. This condition is
known as Rayleigh’s Criteridfi'* and it is readily satisfied
for flow driven by a unidirectional external force.

V. SHORT WAVELENGTH MODES

In the limit of 9,>1/a, all the perturbed variables have
variations ings andz which are of short scale compared with
a. In that case, several terms in E@1) can be neglected

including the KH term. Making these approximations, Eq.

(21) becomes

volved. We restrict ourselves to the special case of large

elongation, i.e.p>a. In this limit, we expect the Kelvin—
Helmholtz growth rate to scale agy~V/a. However, the

sound frequencyys, scales asys~c¢b-V|~ce/b. Thus,
¥s<7Ykn, in which case one may neglé?qF in Eq. (22). For
the resulting system, we assume the eikonal soluijon
— & exf —iwt+ikz]. Equation(21), when divided byw, be-
comes

d do
w{“‘w}‘k{

n

).

BZ

(V) )kD

w
+2k< K'V¢B>,

- (26)

and Eq.(22) becomes

wp~p'Fk, (27)

- Vi dp

2 (30)

d -
M 5(V7h)=—2

(31

Before solving the systen30), (22), and (23) for the V'
stabilized interchange, we examine the c¥se0 first.

V2=g5+B 2.

A. Interchanges without flow shear

We assume an eikonal solutiogh— ¢ exp(—iwt+ik2).
As k—oo, it can be shown thdi,|<k, i.e., a local disper-
sion is obtainable. In that case, E¢30) and(22) become

- k- Vi
nMw<1/BZ>k¢=—2< ~ p>, (32
[0?+¢2B-V (B 2B-V)]p=wp'FKe, (33



Phys. Plasmas, Vol. 6, No. 10, October 1999

wherecZ=yp/nM and we used) from Eq. (23 into Eq.

(22) to get the second order magnetodifferential equation

[Eq. (33)]. The system32)—(33) is hard to solve in general.
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k- Vi p’\~
- F><m)¢. (43)

92 -
ﬁ[<V'272+ BZ>¢]=2<

The essential behavior can be discerned by taking two artifhis equation can be solved exactly in terms of Legendre

ficial limits, namely,cc—0 andcs— . Forc,—0, the sec-
ond term on the left-hand-side of E@®3) can be neglected.
The resulting expression fqy inserted into Eq(32) yields
the local dispersion relation

wzz—z(f—M)<K‘sz¢F>/<1/Bz>, c—0. (34

As discussed earlier, the- V s average scales ashblyield-
ing w2~c§/ab. The system is unstable f@'<0. “Com-
pressional stabilization” is obtained from ttketerm?!?

Forcs—, we have, from Eq(33), P—p(¢), to lowest
order. Now, annihilating th&-V term in Eq.(33) by a flux

surface average, we get
wp(P)=p' Kp<F>/<1>. (35

Inserting this into Eq(32), we obtain the local dispersion
relation

[P e vuBy
= 2(nM) By  (n T

which scales similarly to the dispersi§84).

(36)

functions? However, the following is readily seen: For early
times, V'272<(B?)/(1), an exponentially growing solution

is obtained(if p’<0) with a growth rate given by Ed34).
However, in the opposite limit of long timesy’?7?
>(B?)/(1), the mode grows only algebraicallyhe 7— =
limit of Eq. (43) is an equidimensional equatipbnConse-
quently, mode growth is retarded considerably. If viscous
and resistive dissipation were included in the analysis as in
Ref. 2, the algebraically growing mode phase mixes rapidly
and damps. A conservative estimate of negligible growth
leads to the “stability criterion®

? p' [ e Vy
(w >2/nR m< o2 >/<1> : (44)
This scales, foa<b, as
(! 2>2—C§/’nR (45)
a ab” "
or
M > Z/?nR v (46)

We have thus obtained useful information on the usuas argued in the Introduction, the Mach number requirement

interchange.

B. Interchanges with flow shear

We now include the effects of flow shear. For simplicity,

we will only consider the artificial limic,— 0. In this case,
the relevant equations are Eq80) and (22) with TJH set to

goes down a&'?if E is large.

VI. OTHER CONFIGURATIONS

The calculation herein has been done for an elongated
plasma such as the one in Fig. 1. The conclusion, however, is
general in that plasma elongation generally aids velocity
shear stabilization. As an example of practical interest, con-

zero. We assess stability in this case by employing the metfsider the configuration of Fig. 2. In this system, plasma is
ods of Ref. 2. Accordingly we first make a coordinate trans—contained along the lines by insulators as end-plateg. in

formation from (/,z,t) to (x,¢,7) defined by

X=y (37)
{=z=V(t, (38)
T=t. (39
The transformed equations are
i e K~V1//&E)
nM(%_(V h)y= 2<—B2 r (40)
p_ P
2.=P Fa_g’ (41)
V2=(9y—V'79,)*+B %32, (42

We now note thak and{ are ignorable in the local approxi-
mation. Thus, we lev,—ik, and we letd,—0 since the
fastest growing interchanges are ones wigh- 0. Eliminat-

ing p in the set(40) and (41), we obtain an evolution equa-
tion for ¢

Insulators are necessary, if there is an axial flow, to prevent
“line-tying.” This system may be unstable to the inter-
change on account of the magnetic curvat(aghough the
average curvature needs to be evalupt&€learly, however,

an elongated system is better stabilized by velocity shear.
While the example of Fig. 2 is somewhat contrived, such
systems are practical #is periodic, as in a toroidal geom-
etry. In that case, the toroidal rotation plays the additional
role of centrifugally confining the plasma to the outboard
side® The centrifugally confined plasma now makes for a
practical fusion device. Evidently, elongated centrifugally
confined systems would be more stable.

While the latter statement is essentially correct, it is
worthwhile to place it in a fuller context. The same, toroi-
dally outward, centrifugal force that provides centrifugal
confinement also tends to increase the drive for interchange
instabilities. That is to say, the effective “gravity” that
drives the interchange modes now includes, in addition to the
magnetic curvature, the centrifugal force from rotation. In
particular, for supersonic flows, the gravity is apparently
dominated by the centrifugal force. The latter effects have
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netic shear in the system, however, then the idea behind this
paper, that stabilization results from plasma shaping, must be
revisited. This is because the operative physics of velocity
shear stabilization in magnetic sheared systems is signifi-
cantly different from that underlying criteriofl). To give

one examplé? velocity shear coupled with the magnetic
shear causes convection cells to propagate along the mean
magnetic field: If the mean field moves to and from regions
of favorable and unfavorable gravity, the stabilization comes
from the average time spent by the cell in the good gravity
region, rather than from the phase mixing physics that is of
importance in criterior{1). Clearly, how shaping affects this
physics needs examination.

VII. CONCLUSION

Velocity shear stabilization of plasma instabilities is de-
sirable in fusion devices. For loy8 systems with insignifi-
cant magnetic shear, the strongly unstable ideal modes are
the interchange modes: These modes can be stabilized by
velocity shear provided’ exceeds the growth ratg, by a
factor of [/nR]¥2 R being the Reynolds number. This
translates to Mach numbers of the ordef 6hR]Y?, ~4 for
fusion parameters. Any reduction in this critical Mach num-
FIG. 2. An open system with an elongated poloidal field configuration. ber is desirable. One way of achieving this reduction, shap-
ing the plasma cross section, is investigated in this paper. By
examining elongated plasmas, we have shown that the Mach

been examined in detail in Ref. 13 — we summarize thenumber requirement is no longer independent of geometry,
in fact scales a£ Y2 The critical Mach number is of

results here. Primarily, it important to point out that the cen-O /0RIE)YZ. O vsi i h lenath

trifugal acceleration acts only on the mass density of the [( ?1 ) .L ur anayls,ls aﬁp |es|to' s .ng. wave er?gt

plasma, as opposed to the acceleration from magnetic curv lterchanges. Long wave ength ana ysis in _|cates_ t E?‘t as
)ng as the flow profiles do not have an inflexion point, i.e.,

ture which acts on the plasma pressure. Thus, as far as te N 4vid 0 IRavieiah's th h
perature gradients go, centrifugal effects are not operativ #ln Y170 [Rayleigh's t eofeﬂ’ the sys_tem
should be stable for €E. Such “Rayleigh-flow” profiles

and, as such, the conclusions of the present paper apply A btain for fi ari b idirectional |
elongation should be a stabilizing effect for maintaining tem-2/Ways obtain for flows driven by a unidirectional externa

perature gradients. Now as far as density gradients go, ree.

have showl? that the stabilization that comes from elonga- h Thdg conc!u3|c>|n of this pﬁpgr v(\j/ould t?e bgst Ibo_rne ouft ,by
tion is now replaced by a corresponding stabilization thaflree-dimensional magnetohydrodynamic simulations of in-

comes from large aspect ratio. This correspondence is qui]fgrchange unstable elongat&epinches. Work along these

close in that, for fixed peak rotation speed, the centrifugames IS In Progress.
gravity decreases inversely with major radiBs as 1R,
while the velocity shear, again for fixed peak rotation speed,
still scales inversely with the minor radias as 14. Thus,
for both density as well as temperature gradients, the genera

idea that velocity shear continues to act over the minor ra-  The suggestion that elongation might reduce Mach num-
dius while destabilizing effects can be nudged downward by,er yequirements for velocity shear stabilization was made

geometrical shaping, is operative. by Dr. R. J. Goldston. This work was supported by the De-
Finally, we point out that the entire discussion in this partment of Energy.

paper is focused on systems in which there is no magnetic
shear. In particular, the basic criterion that motivates the pa-
per, Eqg.(1), was calculated for a magnetic configuration with
no magnetic shear, in which case .the ideas qf shearing rateg; | o Phys. Fluids, 195(1963; R. A. Brown, Rev. Geophys. Space
versus growth rates and phase mixing as being the underly-phys.18, 683(1980.
ing physics of stabilization are relatively easy to define. Sys-iﬁ- S- Eassam, zhyS- Fluidsl»j IE 485 (Plk?92).c . Fusib75 (1991

H H H H H . B. Hassam, Comments Plasma ys. Control. Fu .
tems W!thOUt _magnetlc Shef” are of interest _In deylces fo_r“R. E. Waltz, R. L. Dewar, and X. Garbet, Phys. Plasfba$784(1998.
magnetic fusion such as field-reversed-configurations, disr groebner, Phys. Fluids B 2343(1993.

poles, and centrifugally confined plasmas. If there is mag-°A. B. Hassam, Comments Plasma Phys. Control. Fus&r263(1997.
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