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NLD SENSOR NETWORKS:

THEORETICAL STUDIES

Theory Faculty:

Prof. Thomas Antonsen (ECE, Physics, IREAP)
Prof. Michelle Girvan (Physics, IPST, IREAP)
Prof. P. Krishnaprasad (ECE, ISR)
Prof. Ed Ott (ECE, Physics, IREAP)
Prof. Jim Yorke (Math, IPST)
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Areas of Theoretical Work

• Modeling and simulation of devices 
and systems in direct support of 
specific experiments underway or 
planned.

• Development of applicable theory.

•Theoretical and computational 
exploration of generic sensor 
concepts.
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This Talk Briefly Discusses Three 
Current Research Projects

• Adaptive Learning Network Sensor Using Chaos Sync
Postdoc: Francesco Sorrentino
Faculty:  E. Ott

• Modeling Chaotic TWT’s
Student: W. S. Lee
Faculty:  T. M. Antonsen, J. Rodgers, and E. Ott

• Stability and Chaos in Boolean Networks
Student: Andrew Pomerance
Faculty:  E. Ott, M. Girvan, and W. Losert
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Adaptive Network Sync. of Chaos

GOAL: Determine {Aij}

Aij : Strength of j →i link.

State of system i (e.g., a 
laser or TWT).

broadcast by system i.

received by system i.
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Evolution of System i

xi t F xi t ri t j i Aij t H xi t ij

ri t j i Aij t H x j t ij

TIME DELAYS
If , then there is a synchronized
solution

where
.

Q. Is this solution stable?
A. Maybe
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Learning the Ntk: Aij(t)→ Aij(t)

• Define a ‘potential’:

where             
• Evolution of Aij(t):

For Aij(t) evolution slow w.r.t. ν-1.
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Preliminary Numerical Test

• Rössler system:                                  (uncoupled)

• 4 node network, 12 links

•Links:

•Error:
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Modeling Chaotic TWTs

Passive linear Filter H(ω) y(t) NL Gain, and phase shift O(t)

Delay τ

TWT
k O(t)k O(t-τ)

Previous model (normalized)
Linear part:

NL part:

)];([ˆ)( τ−= tkOHty (Low-
pass)Δ+

Δ
=

s
GsH )(

2

2

)(1
))(exp(

)()(
ty
tyi

tytO
+

=
η



9

Improved Model

•Linear:

•NL description of phase shift:

•Fitting of parameters to experiments
gives good description of device.
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Current and Future Work
•Current: Modeling experiments on
synchronization of two coupled TWT chaotic
oscillators.

•Future: Use model to simulate coupled systems
of several chaotic oscillators acting in a sensor 
network.

•Talk on experiments by John Rodgers.

• Poster presentation by Wai-Shing Lee (advised
by E. Ott, T. Antonsen and J. Rodgers)
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Stability of Boolean Networks
S2

S3

S4S5

S1

S6

•State of node i at time t, Si(t)=0 or 1
•Output of node i depends on its inputs with delays:
Si(t)=F[S1(t-τi1), S2(t-τi2),…]
E.g., S1(t) depends on S2(t-τ12) and S6(t-τ16)

Our Motivation for looking at these systems:
Sensor motivated experiments of Lathrop at UMD 
and of Gauthier at Duke

Previous Motivation (S.A. Kaufman ’69): Gene ntks
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Stability/Robustness
• Large networks of this type can 

have many attractors.
• How stable are these attractors?
• I.e., if we flip the state of a 

randomly chosen Si is the orbit 
likely to go to some far away 
attractor? 

• Kaufman: ‘Life at the edge of
chaos’. Evolution prefers gene 
networks to be at the border of
stability.
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Our Work

•The stability question also has implications
for our exps., particularly wrt the number of
attractors and robustness to perturbations.

•Stability has previously been addressed only
for a rather trivial class of networks. We show 
how to analize stability for general networks.

•See poster by Andrew Pomerance (grad 
student) E. Ott, M. Girvan and W. Losert.


