

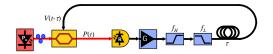
Using synchronization for prediction of high-dimensional chaotic dynamics

Adam B. Cohen, Bhargava Ravoori, Karl R. B. Schmitt, Thomas E. Murphy, Rajarshi Roy

Introduction

We show that synchronization of a numerical model to experimental measurements provides a new way to assimilate data and forecast the future of a time-delayed highdimensional optoelectronic feedback loop. We will use this feedback loop as a modular element of our nonlinear photonic sensor networks.

Experimental schematic



= semiconductor laser diode providing optical power P

= Mach-Zehnder electrooptic modulator optical signal P(t) is modified by an electrical input V(t) as:

$$P(t) = P_o \cos^2 \left(\frac{\pi V(t)}{2V_{\pi}} + \phi_o \right)$$

= high-speed photodetector outputs an electrical voltage proportional to incident optical signal, RP

= electrical amplifier providing gain G

= high-pass electrical filter described by 7th-order Butterworth transfer functions with cut-on frequency $f_H = 1 \text{ MHz}$

= low-pass electrical filter described by 7th-order Butterworth transfer functions with cut-off frequency f_I = 100 MHz

 τ due to optical fiber and electrical cabling τ = 22.5 ns

Mathematical model

Our electronic band-pass filter can be described by:

$$\frac{d\mathbf{u}(t)}{dt} = \mathbf{A}\mathbf{u}(t) + \mathbf{B}x_{in}(t), \quad x_{out}(t) = \mathbf{C}\mathbf{u}(t)$$

where $\mathbf{u}(t)$ is an N-dim state vector (N = order of filter) and A, B, C are matrices describing the linear filter.

Nonlinear time-delayed feedback is described by:

$$x_{out}(t) = \beta \cos^2(x_{in}(t-\tau) + \phi_o)$$

where β is the feedback strength and τ is the feedback delay such that:

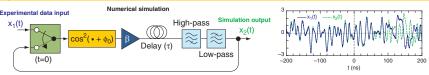
$$x(t) = \frac{\pi V(t)}{2V}, \quad \beta = \frac{\pi GRP_o}{2V}$$

So:

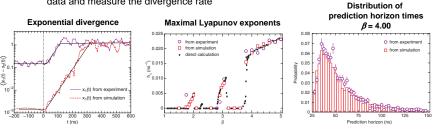
$$\frac{d\mathbf{u}(t)}{dt} = \mathbf{A}\mathbf{u}(t) + \mathbf{B}\boldsymbol{\beta}\cos^2(\mathbf{C}\mathbf{u}(t-\tau) + \boldsymbol{\phi}_o), \quad x(t) = \mathbf{C}\mathbf{u}(t)$$

Note: In the experiments, we only observe the scalar variable x(t) and not all the components of the vector $\mathbf{u}(t)$.

Synchronization & prediction



- (1) Feed experimental data $x_i(t)$ into numerical simulation in place of feedback signal.
- (2) When open-loop synchronization is achieved, release simulation from experimental data and measure the divergence rate



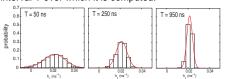
Comparison between experiment & simulation

We study the system by varying the feedback strength β (by adjusting laser power P_{o})

Measured & simulated time series Measured & simulated bifurcation diagrams Laser power (uW) Computed Lyapunov dimension

Distribution of Lyapunov exponents

The distribution of finite-time Lyapunov exponent h_i will vary depending on the time interval T over which it is computed.



Conclusions

- ✓ We have an accurate model for this optoelectronic system.
- ✓ We demonstrate a method for assimilating experimental data into a multi-dimensional, time-delayed model.
- ✓ We can make predictions for many delay periods when the dynamics are about 15 dimensional
- > We could use a similar scheme to synchronize and release two experimental systems for a model-independent measurement of maximal Lyapunov exponents.

Ref.: A.B. Cohen, B. Ravoori, T.E. Murphy, R. Roy, arXiv:0809.3777v1 (2008); to appear in PRL