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Using synchronization for prediction of
high-dimensional chaotic dynamics
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Introduction

We show that synchronization of a numerical model to
experimental measurements provides a new way to assimilate
data and forecast the future of a time-delayed high-
dimensional optoelectronic feedback loop. We will use this
feedback loop as a modular element of our nonlinear photonic
sensor networks.

Experimental schematic

E = semiconductor laser diode providing optical power P,

@ = Mach-Zehnder electrooptic modulator
optical signal P(t) is modified by an electrical input V(t) as:
v ()
P(t) = P, cos’ +
=P, [ N %j

= high-speed photodetector outputs an electrical voltage
proportional to incident optical signal, RP

= electrical amplifier providing gain G

7] = high-pass electrical filter described by 7t-order
Butterworth transfer functions with
cut-on frequency f; = 1 MHz

= low-pass electrical filter described by 7t-order
Butterworth transfer functions with
cut-off frequency f = 100 MHz

@ = delay zdue to optical fiber and electrical cabling
7=22.5ns

Mathematical model

Our electronic band-pass filter can be described by:

% =AU +Bx;, (1), X () = Cu(t)

where u(t) is an N-dim state vector (N = order of filter)
and A, B, C are matrices describing the linear filter.
Nonlinear time-delayed feedback is described by:
X (1) = B 08? (x;, (t=7) +,)

where gis the feedback strength and ris the feedback
delay such that:

_NVO) 5 ACRR
0= v, h= N,
So:
%zAu(t)+Bﬂcosz(Cu(t—T)+¢u)v x(t) = Cu(t)

Note: In the experiments, we only observe the scalar
variable x(t) and not all the components of the vector u(t).

Synchronization & prediction

Numerical simulation

Experimental data input
xi(t)
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(1) Feed experimental data x,(t) into numerical simulation in place of feedback signal.
(2) When open-loop synchronization is achieved, release simulation from experimental

data and measure the divergence rate
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Comparison between experiment & simulation

We study the system by varying the feedback strength g (by adjusting laser power P).

Measured & simulated bifurcation diagrams
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Measured & simulated time series
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Distribution of Lyapunov exponents

The distribution of finite-time Lyapunov exponent h, will vary depending
on the time interval T over which it is computed.
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Conclusions

v We have an accurate model for this optoelectronic system.

v We demonstrate a method for assimilating experimental data into a
multi-dimensional, time-delayed model.

v We can make predictions for many delay periods when the
dynamics are about 15 dimensional

» We could use a similar scheme to synchronize and release two
experimental systems for a model-independent measurement of
maximal Lyapunov exponents.
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