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Introduction
We show that synchronization of a numerical model to 

experimental measurements provides a new way to assimilate 
data and forecast the future of a time-delayed high- 
dimensional optoelectronic feedback loop. We will use this 
feedback loop as a modular element of our nonlinear photonic 
sensor networks.
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= semiconductor laser diode providing optical power Po

= Mach-Zehnder electrooptic modulator
optical signal P(t) is modified by an electrical input V(t) as:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= oo V

tVPtP φπ

π2
)(cos)( 2

= high-speed photodetector outputs an electrical voltage 
proportional to incident optical signal, RP

= high-pass electrical filter described by 7th-order   
Butterworth transfer functions with 
cut-on frequency fH = 1 MHz

= electrical amplifier providing gain G

= delay τ due to optical fiber and electrical cabling
τ = 22.5 ns

Mathematical model
Our electronic band-pass filter can be described by:
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where u(t) is an N-dim state vector (N = order of filter) 
and A, B, C are matrices describing the linear filter.

Nonlinear time-delayed feedback is described by:
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where β is the feedback strength and τ is the feedback 
delay such that:
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Note: In the experiments, we only observe the scalar 
variable x(t) and not all the components of the vector u(t).

Comparison between experiment & simulation

Synchronization & prediction

Conclusions
We have an accurate model for this optoelectronic system.
We demonstrate a method for assimilating experimental data into a 

multi-dimensional, time-delayed model.
We can make predictions for many delay periods when the 

dynamics are about 15 dimensional
We could use a similar scheme to synchronize and release two 

experimental systems for a model-independent measurement of 
maximal Lyapunov exponents.

P(t)

V(t-τ)

We study the system by varying the feedback strength β (by adjusting laser power Po ).
Measured & simulated time series Measured & simulated bifurcation diagrams

Distribution of Lyapunov exponents
The distribution of finite-time Lyapunov exponent h1 will vary depending 
on the time interval T over which it is computed.
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(1) Feed experimental data x1 (t) into numerical simulation in place of feedback signal.
(2) When open-loop synchronization is achieved, release simulation from experimental   

data and measure the divergence rate
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= low-pass electrical filter described by 7th-order   
Butterworth transfer functions with 
cut-off frequency fL = 100 MHz
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So:

Computed  Lyapunov dimension

Laser power (µW)
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