Sensor Platform Motion Control

P.S. Krishnaprasad

ONR MURI Review - Exploiting Novel Dynamics for Nonlinear Sensor Networks October 3, 2008

Motivation

Synthesize and understand feedback laws for motion pattern generation in networks of sensor platforms.

Outline

• Geometry for Cooperative Control Curvature, patterns, and feedback

• Pursuit Laws and Cooperative control Pursuit manifolds, accessibility and cohesion

• Mutual Pursuit and a Hamiltonian System Symmetry and reduction 1. Geometry for Cooperative Control (of sensor platforms)

Platforms as Interacting Particles in 3D

The **natural curvatures** are controls. In general, time-dependent speeds are dictated by propulsive/lift mechanisms. Here we fix speed =1 for simplicity.

3D Equilibrium Shapes

- Control laws are assumed to be invariant under rigid motions.
- Shape variables capture relative distances and angles between particles.
- Shape equilibria correspond to steady-state formations.

Other spatial patterns?

Interaction (Feedback) Law for 3D

Natural curvatures for particle #1:

$$u_{1} = -\eta \left(\frac{\mathbf{r}}{|\mathbf{r}|} \cdot \mathbf{x}_{1} \right) \left(\frac{\mathbf{r}}{|\mathbf{r}|} \cdot \mathbf{y}_{1} \right) + f(|\mathbf{r}|) \left(\frac{\mathbf{r}}{|\mathbf{r}|} \cdot \mathbf{y}_{1} \right) + \mu \mathbf{x}_{2} \cdot \mathbf{y}_{1}$$
$$v_{1} = -\eta \left(\frac{\mathbf{r}}{|\mathbf{r}|} \cdot \mathbf{x}_{1} \right) \left(\frac{\mathbf{r}}{|\mathbf{r}|} \cdot \mathbf{z}_{1} \right) + f(|\mathbf{r}|) \left(\frac{\mathbf{r}}{|\mathbf{r}|} \cdot \mathbf{z}_{1} \right) + \mu \mathbf{x}_{2} \cdot \mathbf{z}_{1}$$

Natural curvatures for particle #2:

Lyapunov Function

2. Pursuit Laws and Cooperative Control

Modeling Pursuit in 2D

Here we specialize the models of section 1 to the plane. The speed ratio is given by $_{V}$, assumed constant and less than 1 in what follows.

$$r = r_p - r_e$$
 is the baseline

Three Pursuit Manifolds

p VX. x_{v}

Classical Pursuit

Constant Bearing

Motion Camouflage

A Distance Function

Let
$$\Gamma \triangleq \left(\frac{d}{dt}|r|\right) / \left|\frac{dr}{dt}\right|$$
 (3)
= $\frac{r}{|r|} \cdot \frac{\dot{r}}{|\dot{r}|}$

well-defined on non-collision states.

Observe $-1 \le \Gamma \le 1$, $1-\nu \le |\dot{r}| \le 1+\nu$

and

$$1 - \Gamma^2 = \frac{|w|^2}{|\dot{r}|^2}$$

Driving Γ to ± 1 corresponds to reducing distance to motion camouflage manifold

As	$\Gamma \rightarrow +1$	baseline lengthening
As	$\Gamma \rightarrow -1$	baseline shortening

Finding a Feedback Law

Under the hypothesis that $|u_e|$ is bounded, one can justify a simple control law.

$$u_p = -\mu \left(\frac{r}{|r|} \cdot \dot{r}^{\perp}\right) \tag{4}$$

Definition

For the pursuit-evader system (1), (2) with Γ defined by (3), we say that motion camouflage is <u>accessible in finite time</u> if for any $\varepsilon > 0$, there exists a time $t_1 > 0$ such that

$$\Gamma(t_1) \le -1 + \varepsilon$$

E.W. Justh and P. S. Krishnaprasad (2006), *Proc. R. Soc. A*, 462:3629-3643. P.V. Reddy, E.W. Justh and P. S. Krishnaprasad (2006), *45th IEEE CDC*, pp.3327-3332.

Proposed Cohesion Law from Pursuit

$$\dot{\boldsymbol{r}}_{p} = \boldsymbol{x}_{p}$$
$$\dot{\boldsymbol{x}}_{p} = \boldsymbol{y}_{p}\boldsymbol{u}_{p}$$
$$\dot{\boldsymbol{y}}_{p} = -\boldsymbol{x}_{p}\boldsymbol{u}_{p} \qquad (1)$$

 $r = r_p - r_e$ is the baseline

$$u_{p} = -\mu \left(\frac{r}{|r|} \cdot \dot{r}^{\perp}\right) = u$$
$$u_{e} = -\frac{\mu}{v} \left(\frac{r}{|r|} \cdot \dot{r}^{\perp}\right)$$

$$\dot{\mathbf{r}}_{e} = v\mathbf{x}_{e}$$
$$\dot{\mathbf{x}}_{e} = v\mathbf{y}_{e}u_{e}$$
$$\dot{\mathbf{y}}_{e} = -v\mathbf{x}_{e}u_{e} \qquad (2)$$

3. Mutual Pursuit and a Hamiltonian System

Dynamics in Mutual Pursuit

$$r = g$$

$$g = uh$$

$$h = -ug$$

Here
$$g = x_p - v x_e$$
 and $h = y_p - v y_e$.

Let
$$\lambda = \frac{r}{|r|} \cdot h$$
 $\gamma = \frac{r}{|r|} \cdot g$ and $\rho = |r|$.
Note $u = -\mu\lambda$.

Symmetry & Reduction

$$\dot{\rho} = \gamma \dot{\gamma} = (\frac{1}{\rho} - \mu)(\delta^2 - \gamma^2)$$

Here we have used the conservation law $\gamma^2 + \lambda^2 \equiv \delta^2$.

Discrete Symmetry

The system is reversible under the involution

$$(\rho, \gamma) \mapsto (\rho, -\gamma)$$

In fact, Birkhoff's theorem applies, and with the exception of two collision/escape manifolds all orbits are periodic. The "energy integral"

$$E(\rho,\gamma) = \rho^2 (\delta^2 - \gamma^2) \exp(-2\mu\rho)$$

implies a Poisson bracket

$$\{\rho,\gamma\} = -\frac{\exp(2\mu\rho)}{2\rho^2}$$

Phase portrait of reduced system

Ongoing Work, Collaborations, and Support

- Dynamics of center of mass, dissipation, and stabilizing specific periodic orbits (Matteo Mischiati, G3) see poster
- Many-body network coupling (Dr. Eric Justh, NRL), and relationship to earlier feedback laws for cohesion
- Alternative mutual pursuit mechanisms (Kevin Galloway, G5) see poster

See also poster of Dr. Arash Komaee on stochastic control over free space optical links

• Support from ONR-MURI (Dr. M. Shlesinger) and leveraged support from ARO (Dr. R. Zachery), and AFOSR (Dr. W. Larkin) is gratefully acknowledged.