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Motivation

Synthesize and understand feedback laws for motion pattern 
generation in networks of sensor platforms.

Dragoneye UAV



Outline

• Geometry for Cooperative Control
Curvature, patterns, and feedback  

• Pursuit Laws and Cooperative control
Pursuit manifolds, accessibility and cohesion

• Mutual Pursuit and a Hamiltonian System
Symmetry and reduction



1. Geometry for Cooperative Control
(of sensor platforms)



Platforms as Interacting Particles in 3D
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Unit speed 
assumption

The natural curvatures are controls. In general, time-dependent 
speeds are dictated by propulsive/lift mechanisms. Here we fix 
speed =1 for simplicity.



circling formation

3D Equilibrium Shapes

• Control laws are assumed to be invariant under rigid motions. 

• Shape variables capture relative distances and angles between particles.  

• Shape equilibria correspond to steady-state formations.
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Interaction (Feedback) Law for 3D

Baseline 
alignment

Collision 
avoidance

Heading 
alignment

Natural curvatures 
for particle #1:
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Natural curvatures 
for particle #2:



Lyapunov Function

( )2 1 2 1ln 1 (| |)V h= − + ⋅ + −x x r r

Penalize heading-direction 
misalignment Penalize inter-particle distances 

which are too large or small

or

)(ρh

ρ

)(ρf • V depends only on shape variables.

• Idea: show that for suitable choice of 
control law, dV/dt 0.

• Justh-PSK (2003-2006).

2 1, ρ= − =r r r r



2.   Pursuit Laws and Cooperative Control 
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Modeling Pursuit in 2D
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Here we specialize the models of section 1 to the plane. The speed
ratio is given by   , assumed constant and less than 1 in what follows.ν

p er r r is the baseline= −



Three Pursuit Manifolds

Classical Pursuit             Constant Bearing         Motion Camouflage



A Distance Function

Let
(3)

well-defined on non-collision states.

Observe

and

Driving to         corresponds to reducing distance to motion 
camouflage manifold
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Finding a Feedback Law

Under the hypothesis that         is bounded, one can justify a simple control
law. 

(4)

Definition
For the pursuit-evader system (1), (2) with     defined by (3), we say that 

motion camouflage is accessible in finite time if for any            , there 
exists a time            such that    
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E.W. Justh and P. S. Krishnaprasad  (2006), Proc. R. Soc. A, 462:3629-3643.
P.V.  Reddy, E.W. Justh and P. S. Krishnaprasad  (2006), 45th IEEE CDC, pp.3327-3332.



xp
yp

rp

ye

re

xe

Proposed Cohesion Law from Pursuit 

(1)

(2)

p p

p p p

p p p

u

u

=

=

= −

�
�
�

r x

x y

y x

e e

e e e

e e e

v
v u
v u

=
=
= −

�
�
�

r x
x y
y x

p er r r is the baseline= −

.
| |

.
| |

p

e

ru r u
r

ru r
r

μ

μ
ν

⊥

⊥

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
⎛ ⎞

= − ⎜ ⎟
⎝ ⎠

�

�



3. Mutual Pursuit and a Hamiltonian System



Dynamics in Mutual Pursuit
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Symmetry & Reduction
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Discrete Symmetry

The system is reversible under the involution 

In fact, Birkhoff’s theorem applies, and with the exception of two
collision/escape manifolds all orbits are periodic. The “energy integral”

implies a Poisson bracket

( , ) ( , )ρ γ ρ γ−6

2

exp(2 ){ , }
2

μρρ γ
ρ

= −

2 2 2( , ) ( ) exp( 2 )E ρ γ ρ δ γ μρ= − −



Phase portrait of reduced system
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Ongoing Work, Collaborations, and Support

• Dynamics of center of mass, dissipation, and stabilizing 
specific periodic orbits (Matteo Mischiati, G3) – see poster

• Many-body network coupling (Dr. Eric Justh, NRL), and 
relationship to earlier feedback laws for cohesion

• Alternative mutual pursuit mechanisms
(Kevin Galloway, G5) – see poster

See also poster of Dr. Arash Komaee on stochastic control 
over free space optical links
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