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Motivation

Synthesize and understand feedback laws for motion pattern
generation in networks of sensor platforms.
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1. Geometry for Cooperative Control
(of sensor platforms)



Platforms as Interacting Particles in 3D
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The natural curvatures are controls. In general, time-dependent
speeds are dictated by propulsive/lift mechanisms. Here we fix
speed =1 for simplicity.



3D Equilibrium Shapes

 Control laws are assumed to be invariant under rigid motions.

 Shape variables capture relative distances and angles between particles.

» Shape equilibria correspond to steady-state formations.
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Other spatial patterns?




Interaction (Feedback) Law for 3D
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Lyapunov Function

V =—In(1+x,-x,)+h(r,—r|)

Penalize heading-direction I
misalignment Penalize inter-particle distances
which are too large or small

h(p)
/f(,o) * \V depends only on shape variables.

* ldea: show that for suitable choice of

vl

Iy P — | control law, dV/dt < 0.

e Justh-PSK (2003-2006).

r=r,—-r, p=|r|




2. Pursuit Laws and Cooperative Control



Modeling Pursuit in 2D

Here we specialize the models of section 1 to the plane. The speed
ratio is given by y,, assumed constant and less than 1 in what follows.
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Three Pursuit Manifolds
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Classical Pursuit Constant Bearing Motion Camouflage



A Distance Function

Let r 2 (% It |j/dr .
dt

r r
|r||r]

well-defined on non-collision states.

Observe -1<I'<1 |, 1-v<|rF| L1+
2
¥

Driving T" to +1 corresponds to reducing distance to motion
camouflage manifold

As I'>+1 baseline lengthening
As I'—->-1 baseline shortening



Finding a Feedback Law

Under the hypothesis that |y | Is bounded, one can justify a simple control
law.

u, = —H(L-Hj (4)

Definition
For the pursuit-evader system (1), (2) with I' defined by (3), we say that

motion camouflage is accessible in finite time if forany ¢>0 , there
exists a time t, >0 such that

I't)<-1+¢

E.W. Justh and P. S. Krishnaprasad (2006), Proc. R. Soc. A, 462:3629-3643.
P.V. Reddy, E.W. Justh and P. S. Krishnaprasad (2006), 45" IEEE CDC, pp.3327-3332.



Proposed Cohesion Law from Pursuit
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3. Mutual Pursuit and a Hamiltonian System



Dynamics in Mutual Pursuit
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Here g=x,-vXx, and h=y —vy.
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Note u=-ul.
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Symmetry & Reduction
p=y
' 1 2 2
y=(—=—m)(6"-7")
yo,

Here we have used the conservation law
)/2+ﬂ,2552.



Discrete Symmetry

The system is reversible under the involution

(0.7) = (p,—7)

In fact, Birkhoff’s theorem applies, and with the exception of two
collision/escape manifolds all orbits are periodic. The “energy integral”

E(p,7)=p" (6" —r*)exp(—2up)
Implies a Poisson bracket

exp(2up)
2p°

{o.7}=-



Phase portrait of reduced system
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* Dynamics of center of mass, dissipation, and stabilizing
specific periodic orbits (Matteo Mischiati, G3) — see poster

e Many-body network coupling (Dr. Eric Justh, NRL), and
relationship to earlier feedback laws for cohesion

 Alternative mutual pursuit mechanisms
(Kevin Galloway, G5) — see poster

See also poster of Dr. Arash Komaee on stochastic control
over free space optical links
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