Exploiting Nonlinear Dynamics for Novel Sensor
Networks (UMD-DUKE)

nonlinearity

 Network of nonlinear
optoelectronic nodes

for sensing applications

 We have constructed,
experimentally measured, and
simulated coupled,
time-delayed optical nonlinear

delay
systems with feedback.
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Nonlinear Photonic Sensor Networks

« Adam B. Cohen (Phys, IREAP)
 Bhargava Ravoori (Phys, IREAP)

« KarlR. B. Schmitt (AMSC, IPST, IREAP)
« Thomas E. Murphy (ECE, IREAP)
 Rajarshi Roy (IPST, Phys, IREAP)

« Why photonics?
« High speed, precise localization of perturbations
 Compact, durable, efficient, eye-safe, lightweight, rugged

« Combination of photonics and electronics allows implementation of novel
sync algorithms and information processing with state-of-the-art DSP (digital
signal processing) technology
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First year goals

» Design single (optoelectronic) system best suited for generation of wide
range of signals

* Develop accurate numerical model
* Incorporate digital signal processing technology

wide range of time scales
exceptional ability to vary coupling and time delays in network

» Explore coupling schemes and synchronization properties
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Nonlinear Optoelectronic time-delayed feedback loop

photo-

REin detector

B oscilloscope
amplifier

Loop delay: t = 22.5 ns,
Bandpass filter: 1 MHz — 100 MHz
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Mach-Zehnder electro-optic modulator

Principle : Interference of the optical signal along the two paths
controlled electronically.
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v" Such a system had been considered before by Kouomou et. al., PRL 95, 203903 (2005)
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two cascaded single pole filters
d

X 1
X + + 2| x(s)ds = Scos? (x(t—T.)+
T Ht{ (s)ds = Bcos? (x(t—T,) + @)

where, 7 Is the low pass filter time constant
6 is the high pass filter time constant
T, is the time delay in the loop

S 1s the feedback strength
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The feedback strength 3 iIs given by

6 709 P()RG
2V,

» P, = optical laser power (W)

R = photodiode responsivity (A/W)

« G = transimpedance amplifier gain (V/A)
* V_= modulator half-wave voltage (V)
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Generalized Model, with Arbitrary Filters

input output
r(t) H(o z(t) * Filter Equations:
e 2 4(t) = Au() + Br(
3 | feedback delay
z(t) = Cu(t)
1¥ e Feedback:

cos®(e + ¢y)

nonlinearity T(t) — ﬁ C082 [Qj(t — 7_) + ¢O]

Experimental system: u(t) is 14x1 state vector
— 7% order Butterworth bandpass filter
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Comparison of experiment and computations
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Data assimilation, synchronization, and prediction

B=5.0 T=7634 ns
D, =16.1 t=0to 8200 ns
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Data assimilation, synchronization, and prediction

B=5.0
D, =16.1 t=0to800ns
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Data assimilation, synchronization, and prediction

B=5.0 T=7634 ns
D, =16.1 t=7200to 8000 ns
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Synchronization between experiment and model
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Global maximal Lyapunov exponents and probability distribution of prediction times
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Summary |

e Designed optoelectronic feedback system:
a modular element for the photonic sensor
network

* Developed an accurate model

 Demonstrated data assimilation by
synchronization of numerical model to
experimental data, and prediction for high
dimensional chaotic systems

» Accepted for publication:
PRL October 2008
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Scaling the Speed of the System

How FAST (or SLOW) can we go?

MZI

LD PD AMP

a*

PC

e Optical medium can support any modulation speed

» Advantages of using optical carrier
— Low loss propagation (fiber: 0.2 dB/km)
— Directionality (collimated beam)
— Reduced size, weight, power

« Factors that limit speed:
— Electrooptic modulator Bandwidth:

— Photoreceiver
. Ve DC to 40 GHz
— Filters, amplifiers
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Scaling to Low Speed

GOAL: Slow down system by 10,000 X

* High frequency signals are not needed to
sense static/slow moving objects

e Slower components are easier to engineer
and model, exhibit near-ideal performance

* Retain advantages of an optical carrier

* Provide testbed for trying new ideas
(before investing in costly RF components)
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From VHF to Audio: Comparison

LD

PC

v} 0
3

AMP

Required T

VHF System Audio System

Bandpass filter |1 MHz — 100 MHz | 100 Hz — 10 kHz

H(w)

Time Delay (7) 20 ns 200 s
Propagation 4 m 40 km
Distance (L)

Sampling Rate 1 GS/s 100 kS/s

@UN]VERSITY OF
=’ MARYLAND

T in order to adequately resolve signal




Solution: Digital Signal Processing
$-!.|-—C>-—>{$>->-»@—»/—\—»-

« All digital delay (7):
— Limited only by memory:

« Example: .
16 Mb on-board SDRAM Up to 88 seconds of digital

16 bit ADC / DAC delay, with 10 us resolution
Sampling rate = 96 kS/s

« All digital filter H(w):
— Can be precisely designed, controlled, matched

« Retain analog optical modulation, transmission,
detection

— Important for sensor applications
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Advantages of DSP

« DSP systems are ubiquitous & inexpensive

— Found in DVD players, cell phones, children’s toys,
etcetera

 Arbitrary filtering is possible
(subject to Nyquist limit)

e Easier to simulate:
— Continuous-time DDE - Discrete map

e Easily scaled to MHz frequencies
o Adaptive control of filter, coupling, delays
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Adaptive Control of System Parameters

 Feedback strength (5) slowly increased from 0 to 8
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Coupling and Synchronization
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Q: Under what conditions can these
systems synchronize?
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Synchronization — Method 1

C H(w) | cos’(e + ¢,)

C H(w) || cos®(e + ¢a)

e Synchronization Is guaranteed
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Synchronization — Method 2
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e Synchronization is possible but NOT
guaranteed (depending on k)
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Bidirectional Synchronization
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Synchronization Observed In Experiments
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Synchronization at Low Speeds
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Synchronization at Low Speeds
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Sensor Networks (n=23)
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Scheme 1:

» Disturbance causes loss of synchronization
Scheme 2:

* Network dynamically adapts to maintain synchronization
— ldentification and tracking of 5,
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Unidirectional Synchronization (n=3)
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Sensor Networks (n > 60,000)

« Take advantage of
parallel modulation and
detection

— Only one laser needed
 Applications in image
and motion recognition

* Reconfigurable delay
and feedback via FPGA

 DURIP Proposal:

“Complexity-Based Optical
Sensor Networks: Design and
Characterization”

(under consideration)
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Summary and Future Directions

SUMMARY

e Constructed and characterized modular optoelectronic
feedback system

* Investigated synchronization between 2+ systems

* Implemented real-time DSP control of filters, couplings,
and delays

FUTURE DIRECTIONS
« Investigate adaptive synchronization of networks
 More complex networks of systems

« Parallel modulation and detection using imaging
technology:
— Spatial light modulators
— Focal plane array detectors
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