OBSERVING OPTICAL TRANSITION RADIATION FROM 10keV ELECTRONS

Sean Casey
Dickinson College, Carlisle PA
University of Maryland, TREND 2005
Advisors:
Dr. Ralph Fiorito, Dr. Donald Feldman, Dr. Patrick O'Shea
Observing Optical Transition
Radiation from 10keV Electrons
Observing Optical Transition Radiation from 10keV Electrons
Characteristics of OTR

• Fast timescale (ns- same as beam timescale)
• Linearly Dependent on Electron Beam Current
• Highly Polarized- Sin$^2\alpha$ Dependent (α= Angle of Polarization)
• Linearly Dependent on Wavelength Term ($\frac{d\lambda}{\lambda^2}$)
• Dependent on ψ (ψ=screen angle)
Observing Optical Transition Radiation from 10keV Electrons

- PMT Voltage [mV] detection of Optical Transition Radiation versus UMER Beam Current [mA]
- Polarization of Optical Transition Radiation: Phototube Voltage [mV] as a function Polarization Angle [deg]
- Wavelength Dependence of OTR: PMT Output Voltage [mV] versus dλ/λ² [nm⁻¹]
- Angular Distribution of Horizontally Polarized OTR: Normalized Intensity vs. Psi [deg]
Conclusions

Observed OTR from 10keV electrons with high degree of certainty

Future Considerations

Need further investigation with angular distribution to reconcile theory with data
1) **Beam Current Time Response**

and Rise Time

- **Output Voltage (mV)** from Burgoz Coil (Current Monitor)
- **74.4mA, 100ns Beam Pulse**
- $\Delta t = 100\text{ns at FWHM}$

2) **OTR Time Response**

and Rise Time

- **Output Voltage (mV) of Phototube** for 74.4mA, 100ns Beam Pulse
- $\Delta t = 100\text{ns at FWHM}$

- **Rise Time of Burgoz Coil (mV)**
 - **74.4mA 100ns Electron Beam Pulse**
 - $90\% V_{MAX}$
 - Rise $= 6\text{ns}$

- **Rise Time of PMT Voltage (mV) Detection of OTR from 74.4mA 100ns Electron Beam Pulse**
 - $90\% V_{MAX}$
 - Rise $= 15\text{ns}$