Analysis of Microwave Propagation In Plasma

Elaine Chung
Advisor: Dr. John Rodgers
Plasma Overview

- Plasma – ionized gas

http://www.noaa.gov
http://www.photoeverywhere.co.uk
http://sohows.nascom.nasa.gov/
Experimental Plasma

- Formed by collisional excitation of gas in an electric field
Introduction

• Plasma
 – Can be controlled electronically
 – Supports the propagation of high-powered electromagnetic waves
 – Has a refractive index

• Applications:
 – Feedback mechanism in a backwards wave oscillator (BWO)
 – Beam steering using plasma
 – Focusing high-powered microwaves at a distance
 – Propagating microwaves in space
Experiment

- Generate plasma (gas pressure: 10 mTorr)
- Take measurements (freq: 1.24 GHz)
 - Plasma potential
 - Hall potential
 - Plasma current
 - RF phase shift
Dependence of Wavenumber k on Frequency

k_r v. Frequency, k_i v. Frequency

1.24 GHz
Conclusion and Discussion

• Above 400 MHz, $k_r \gg k_i$ was demonstrated, therefore electromagnetic wave propagation is low loss.

• Can use a simple electronic means to adjust k_r.

• Results are useful for applications where the dispersion of microwaves in plasma is needed
 – Ex: selecting a region of operation in the BWO