Gyrokystron Design

A High-Power, High-Gain, Second Harmonic Gyroklystron for K-Band Microwave Amplification

Melanie Veale (Washington University in St. Louis)
Professor Wes Lawson (University of Maryland)
Overview

- Overall Design
 - Gyroklystron Anatomy
 - Design Process
- Simulating the MIG
- Simulating the circuit
 - Zero-Drive Stability
 - Optimization
- Conclusion
Overall Design

Axial Magnetic Field:

Gyrokylystron Schematic:
Simulating the MIG

Variable Parameters
- V_c
- B_0
- Magnetic compression ratio (f_m):
 $f_m = B_0 / B_c$

Beam Properties
- $P_{beam} = 100$ MW
- Velocity ratio (α):
 $\alpha = \text{perpendicular velocity} / \text{axial velocity}$
- Guiding center radius (r_g)
- % spread in axial velocity (Δv_z)
Simulating the MIG

- Choose 3 values of α to study:
 1.2, 1.35, 1.5
- Vary f_m to get smallest possible Δv_z
 - Adjust V_c for desired α
 - Check that the beam doesn’t hit the wall
- Repeat at a range of B_0
 - Record r_g for circuit input
Simulating the Circuit

Variable Parameters
- B_0
- P_{in}, drive frequency
- For each cavity:
 - Q_{cavity}
 - Resonant frequency
 - Spacing

Circuit Properties
- Efficiency (η):
 \[\eta = \frac{P_{out}}{P_{beam}} = \frac{P_{out}}{100\text{MW}} \]
- Gain = P_{out} / P_{in}
- Must be:
 - Self-consistent
 - Zero-drive stable
Simulating the Circuit

- Zero-drive stability
 - Start Q (Q_{so}):
 Self-oscillation occurs when $Q_{cavity} > Q_{so}$
 - Cavities 1-3 are generally stable (at the optimal Q), but 4 is unstable
 - Redefine “optimal Q” to be the highest stable Q
 (To be safe, define optimal Q to be $Q_{so} - 10$)
 - Other modes?

![Graph showing Q vs. B_0 for different Q_{so} values](image)
Simulating the Circuit

- Optimization
 - P_{in}
 - Q (cavities 3 and 4)
 - B_0 (with and without stability)
Conclusion

- **Best Design:**
 \[P_{\text{out}} = 26\text{MW} \ (\eta = 26\%), \ \text{Gain} = 58\text{dB} \]
 - For \(\alpha = 1.35, \ B_0 = .71\text{T}, \ P_{\text{in}} = 38\text{W} \)
 - Operating mode is zero-drive stable

- **Other work**
 - Experimental check
 - Especially stability for other modes
 - Other operating frequencies
 - If necessary, investigate changing cathode shape in the MIG