Strain Effects on Impact Dynamics

Emily Lim, Kerstin Nordstrom, Matt Harrington, Wolfgang Losert - IREAP and Department of Physics - University of Maryland, College Park

Introduction
Granular impacts have been studied for many years in the scientific community. Force laws have been characterized, including universal scaling relations (Katsuragi and Durian, *Nature Physics* 2007). Despite this, little is known regarding the microscopic origin of these observations. In other words: we know what the projectile is doing, but what are the grains doing?

Further, scaling relations have only been extensively studied for the same initial conditions: a stirred-up, loose packing. We expect that modifying the initial force network within a granular material will change its subsequent failure on impact.

We can vary the energy of the impact and we apply different (small) strains to the system by translating a wall prior to impact. We can characterize how linear strain affects the bulk impact dynamics of a spherical intruder into granular material. We can also look for corresponding signatures at the microscale, focusing on nonaffine plastic rearrangements.

Objective
• How does preparation of the pile affect bulk impact dynamics?
• What microscopic signatures make up the bulk response?

Experimental Setup

<table>
<thead>
<tr>
<th>Adjustable Wall ~100,000 Borosilicate Beads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Steel Impactor</td>
</tr>
<tr>
<td>Electromagnet</td>
</tr>
<tr>
<td>Light Sensitive High Speed Camera</td>
</tr>
<tr>
<td>Index-Matched* Fluid</td>
</tr>
<tr>
<td>*Dimethyl Sulfoxide + water, fluorescent dye</td>
</tr>
</tbody>
</table>

To translate a wall, a magnet is used to move the impacting wall either a small amount.

Depth vs. Total Drop Height (Kerstin Nordstrom).

Beads immersed in low-viscosity fluid behave similarly to dry ensemble, as shown in blue.

Nonaffine Motion

Nonaffine Motion:
- Nonlinear transformation
- Plastic deformation

Affine Motion:
- Linear (matrix) transformation
- Includes local strain, dilation/compaction, rotation

\[
D_{\text{aff}} = \min \left\{ \sum_{j} \left[\Delta d_j \left(t \right) - E \cdot \Delta d_j \left(t \right) \right] \right\}
\]

\(j = \text{particle in some neighborhood of } t \) (about 10-15 particles total)
\(d = \text{starting distance between } i \text{ and } j \)
\(\Delta d = \text{relative displacement between } i \text{ and } j \)

\(\Rightarrow D_{\text{nonaff}} = \text{strength of nonaffine motion} \)

Bulk Measurements

Depth vs. Time
Small amounts of strain cause significant decrease in final penetration depth.

Particle Tracking

Particle trajectories, created from particle tracking algorithms, show decreasing range of particle movement as strain increases.

Velocity Flow Fields

At the same penetration depth for a set drop height, velocity profiles show slower particle motion with increasing strain.

Conclusions

- Able to study 3D high speed impacts using index-matched imaging
- \(D_{\text{nonaff}} \) measure of nonaffine motion suggests creating force chains within the material creates more affine rearrangement
- Irreversible nature of plastic rearrangements, and the direction of gravity, suggests that where more plastic rearrangements occur, the impact should be deeper.