Avalanches and Entropy Generation in Sand Timers

Nathan Super (College of William & Mary)
Joe Hart (UMD), Don Schmadel (UMD), Tom Murphy (UMD), Raj Roy (UMD)
Background

• Forest fires, neuronal activity, biological evolution
Background

• Forest fires, neuronal activity, biological evolution
• Self-organized criticality
Background

• Forest fires, neuronal activity, biological evolution

• Self-organized criticality
 • Power law distributions
 • $P(x) = ax^{-k} \rightarrow \log(P(x)) = \log(a) - k\log(x)$
 • Scale invariance
Background

- Forest fires, neuronal activity, biological evolution
- Self-organized criticality
 - Power law distributions
 - $P(x) = ax^{-k} \rightarrow \log(P(x)) = \log(a) - k\log(x)$
 - Scale invariance
- Avalanche definition
- Hourglass
Questions

• How does the way we observe this system affect whether/how we see avalanches?
• How does this affect information content in data?
• Can we relate these?
Experimental Setup

- Detector
- Objective
- Lens
- LED
- Image plane
- Object
- Aperture used as field stop
Aperture Diameter (compared after x9 magnification):
Small aperture – 1.17 mm ≈ 1 grain diameters
Medium aperture – 2.59 mm ≈ 2 grain diameters
Large aperture – 3.58 mm ≈ 3 grain diameters

Orifice sizes:
5 minute timer – 0.66 mm ≈ 4 grain diameters
2 minute timer – 0.81 mm ≈ 5 grain diameters
Time Series

Small aperture, large orifice

<table>
<thead>
<tr>
<th>Normalized Variance (σ/V_{mean})</th>
<th>Small aperture</th>
<th>Large aperture</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 min – large orifice</td>
<td>0.11836</td>
<td>0.10736</td>
</tr>
<tr>
<td>5 min – small orifice</td>
<td>0.08734</td>
<td>0.08334</td>
</tr>
</tbody>
</table>
Time Series

Small aperture, large orifice
Size and Duration Distributions

Large aperture, large orifice
Entropy

• Quantification of randomness of system
• Entropy rate calculated by Cohen-Procaccia algorithm – function of temporal and spatial resolution.
• A reliable, computationally inexpensive calculation of entropy rate.
Entropy

• Quantification of randomness of system
• Entropy rate calculated by Cohen-Procaccia algorithm – function of temporal and spatial resolution.
• A reliable, computationally inexpensive calculation of entropy rate.

\[H_D(\varepsilon, \tau) = -\frac{1}{N} \sum_{\{x_i\}} \log P(x_i; \varepsilon, \tau) \]

• D: embedding dimension, N: number of reference points
Discretization of analog signals
Entropy

- Quantification of randomness of system
- Entropy rate calculated by Cohen-Procaccia algorithm – function of temporal and spatial resolution.
- A reliable, computationally inexpensive calculation of entropy rate.

\[H_D(\varepsilon, \tau) = -\frac{1}{N} \sum_{\{x_i\}} \log P(x_i; \varepsilon, \tau) \]

- D: embedding dimension, N: number of reference points
- Entropy rate: \(h_D = H_D - H_{D-1} \)
Entropy Generation Rates

Observation Area
5 Minute Timer (0.66 mm diameter) h_3

Orifice Size
Large Aperture h_3
Conclusions

• Unlikely that we saw avalanches
 • Large enough minimum
 • Power law

• Observation area, orifice size did not affect distributions

• Higher variance in larger orifices, smaller observation areas

• Correspondingly higher entropy generation rates for these data sets
Future Work

• Different orifice to particle size ratios
• Move vertical observation position along hourglass neck