RF Confinement Using an Induction Cell in UMER
(University of Maryland Electron Ring)

Kathleen Hamilton, University of Maryland College Park
TREND REU at IREAP
August 10, 2018 Research Fair
Mentors: Levon Dovlatyan, Dave Matthew, Dave Sutter, Santiago Bernal, Thomas Antonsen, Jr., and Brian Beaudoin

K. Hamilton, "RF Confinement Using an Induction Cell in UMER"
Increasing UMER’s longitudinal confinement capabilities will allow multi-bunch electron operations and improve its overall research performance.

K. Hamilton, "RF Confinement Using An Induction Cell In UMER"
Implementation of a new longitudinal confinement system involved installation, calibration, current analysis, and phase space investigation.

K. Hamilton, "RF Confinement Using An Induction Cell In UMER"
Performing FFT and NAFF techniques on multiple voltage sweep data sets yielded reasonable average revolution and synchrotron frequencies.

\[
\omega_l = \frac{\beta c}{R} \sqrt{\frac{V (\gamma^{-2} - \alpha_c)}{2\pi \beta^2 E}}
\]

Legend:
- \(\omega_l\) = synchrotron frequency
- \(\beta, \gamma\) = Lorentz relativity factors
- \(c\) = speed of light
- \(R\) = synchrotron radius
- \(V\) = RF voltage
- \(\alpha_c\) = momentum compaction
- \(E\) = energy

K. Hamilton, "RF Confinement Using An Induction Cell In UMER"
Previously, UMER employed ear fields once every few turns, but the new system confines every turn and reveals more beam information.

K. Hamilton, "RF Confinement Using An Induction Cell In UMER"
The induction cell & RF amplifier system is successfully calibrated for future experiments, like multi-bunch mode and phase space exploration.

\[\Delta E_{n+1} = \Delta E_n + eV (\sin \phi_n - \sin \phi_s) \]

\[\phi_{n+1} = \phi_n + \frac{2\pi\hbar\eta}{\beta^2 E} \Delta E_{n+1} \]

Legend:
- \(E \) = energy
- \(e \) = electron charge
- \(\phi_n \) = phase of particle
- \(\phi_s \) = phase of synchronous particle
- \(\hbar \) = harmonic number of RF freq
- \(\eta \) = phase slip factor
- \(\beta \) = Lorentz relativity factor

K. Hamilton, "RF Confinement Using An Induction Cell In UMER"
Acknowledgements

Funding for this project is provided by DOE-HEP award #DE-SC0010301

TREND REU (Training and Research Experiences in Nonlinear Dynamics Research Experience for Undergraduates) sponsored by the National Science Foundation Award Number: PHY1756179

Thanks to the rest of the UMER group for their technical support and invaluable insight: Rami Kishek, Irving Haber, Eric Montgomery, Kiersten Ruisard, Heidi Baumgartner, Antonio Ting, and fellow UMER summer interns Noah Gleason, Glenn Wyche, and William Curtiss.

Correspondence: kahamil@umd.edu