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Chapter 1

Introduction
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The field of Dynamical Systems and Chaos has experienced a highly nonlinear

growth over the past few decades. Besides major progress in topics as bifurcations,

crises, basin boundaries and others, laying the mathematical foundations, new fields

such as Control and Synchronization of Chaos have emerged, addressing more practi-

cal questions.

This Ph.D. thesis contains a little bit of both. The second Chapter is devoted to a

problem in Phase Synchronization of Chaos. Phase Synchronization of Chaos occurs

as a result of a weak interaction between dynamical systems. From the practical point

of view, it offers a new valuable method of testing interdependence between time se-

ries, which found numerous applications in Neuroscience and Communications. The

second Chapter discussed the situation where two periodic systems compete to entrain

a chaotic oscillator. Phase Synchronization of Chaos is a common phenomenon that is

expected to play a major role in disentangling the secrets of nature.

The third Chapter presents a more theoretical problem with far reaching practical

implications, which is the Saddle-Node Bifurcation on a Fractal Basin Boundary. At

first, it may seem puzzling that a saddle-node bifurcation may occur exactly on a fractal

basin boundary, which is a zero Lebesgue measure set. However, not only does this

type of bifurcation happen, but it also relates to the Wada property of fractal basins,

and it is a quite common occurrence in dynamical systems. From the practical point of

view, this problem belongs to the study of what happens when an attracting periodic

orbit is lost due to a parameter variation through a saddle-node bifurcation. When

the saddle-node bifurcation occurs on a fractal basin boundary, the attracting periodic

orbit collides with an unstable periodic orbit embedded in its own basin boundary (i.e.,

the basin boundary of the attracting periodic orbit). The fate of an orbit following

the location of the pre-bifurcation periodic attractor, as the system parameter drifts,
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is indeterminate. It becomes difficult (or impossible) to predict what is the final state

reached by the orbit drifting past the saddle-node bifurcation. The study presented here

characterizes this difficulty analytically, and opens the road for experiments detecting

saddle-node bifurcations on fractal basin boundaries.
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Chapter 2

Phase Synchronization of Chaos in the Presence of Two

Competing Signals
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2.1 Preliminaries

Phase synchronization of chaos has attracted much attention due to its applicability to

a wide range of situations including laser, plasma, fluid and biological experiments.

Synchronization of chaotic attractors with the phase of a periodic externally coupled

signal has been studied theoretically [1, 2, 3, 4, 5] and demonstrated experimentally

[6, 7]. Phase synchronization of coupled chaotic systems has also been studied [8, 9,

10, 11, 12, 13].

In order to define phase synchronism, assume that we are given two signals a and

b where both possess an oscillatory character, such that phases φa(t) and φb(t) can, by

some appropriate means, be defined for the two signals. Here the phases φa,b(t) are

assumed to be continuous in time (i.e., they are not taken modulo 2π), so that, if, for

two times t2 > t1, we have φa,b(t2) − φa,b(t1) = 2Nπ, then we say that the phase φa,b

has executed N counter-clockwise rotations between time t1 and time t2. (Thus, φa,b

is defined on the real line rather than on [0, 2π]. This is refered to as the “lift” of the

angle.)

Two types of phase synchronism can be distinguished: strong phase synchronism

and weak phase synchronism. In terms of the difference �φ(t) = φa(t) − φb(t), there

is strong phase synchronism between the signals a and b if

−K ≤ �φ(t) − φ0 ≤ K

for some constants K and φ0 (typically K ∼ π) and all time t. Thus, | � φ| does not

increase without bound. In weak phase synchronism | � φ| may become arbitrarily

large with increasing time, but the behavior of �φ(t) as a function of time manifests

correlations between the two phases (examples will be given subsequently).

In this chapter we consider the case where two periodic signals compete to en-
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train a chaotic oscillator. There are several possible motivations for this study. First,

there may be real situations where a chaotic dynamical system simultaneously receives

inputs from two distinct periodic systems (e.g., a neuron receiving signals from two

other neurons). Second, the study of a signal with two frequencies can be regarded

as a next step from the single frequency case in obtaining an understanding of phase

synchronization of chaos by signals with nontrivial frequency power spectra (Sec. 4).

Third, this situation is a generalization of the problem in which two periodic signals

compete to entrain a nonlinear periodic oscillator.

2.2 Model Dynamical System

We consider a specific model system consisting of a modified chaotic Roessler [14] os-

cillator coupled to a two frequency input signal, s(t). If we denote the regular Roessler

system by dx/dt = R(x), where xT = (x(t), y(t), z(t)), then our modified (undriven)

system is [4] dx/dt = f(x)R(x), where f is a scalar function of x that is positive

in the region of the chaotic attractor. This modification of the Roessler system does

not change the topology of the trajectory curves followed by orbits in phase space, but

it does modify the speed with which orbits move along these curves. The motivation

for doing this [4] is that the original Roessler system displays a frequency spectrum

with a near-delta-function-like feature, corresponding to the average period for an or-

bit to circulate arround the attractor. This type of behavior is typically not present or

expected in the experimental studies [6, 7, 9, 10, 11, 12, 13]. By our modification, we

introduce enhanced dispersion in the time for an orbit to circulate around the attractor,

and hence the width in the Fourier peak. We take f(x) = 1 + σ(r2 − r̄2), σ = 0.002,

6



r2 = x2 + y2, with r̄ equal to the time average of r for the unmodified and unentrained

Roessler system (r̄ = 5.037) [15]. Our model system becomes [4]:

dx/dt = −[1 + 0.002(r2 − r̄2)](y + z),

dy/dt = [1 + 0.002(r2 − r̄2)](x + 0.25y) + s(t), (2.1)

dz/dt = [1 + 0.002(r2 − r̄2)][0.90 + z(x − 6.0)],

where

s(t) = A1 cos(ω1t) + A2 cos(ω2t), (2.2)

and we have chosen the parameters of the Roessler system so that it is in the so-called

phase coherent regime (i.e., the x-y projection of the trajectory of the chaotic system

with A1 = A2 = 0 continually circles around x = y = 0, and the x-y projection of

the attractor appears to be shaped like an annulus with x = y = 0 in the hole of the

annulus). Our main goals in this study are to examine the illustrative system (2.1),

(2.2) in different regimes, and to delineate and explain the various types of observed

phenomena. We conjecture that the phenomena we observe for the system (2.1), (2.2)

are typical for general oscillatory chaotic systems subject to two frequency external

driving.

From studies of the phase synchronism of chaos by a single sinusoidal signal,

s0(t) = A0 sin ωt, ω = 2π/T , [3, 4] it is known that the parameter space given by

the amplitude A0 and period T of the signal typically displays a tongue-shaped region

where the phase of the attractor locks with the phase of the periodic signal (i.e., per-

fect phase synchronism), as shown schematically in Fig. 2.1(a). For the purpose of the

subsequent discussion we also note that the two frequency entraining signal (2.2) can
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Figure 2.1: (a) Schematic of the parameter space A0-T for the case where there is a

single sinusoidal signal, s(t) = A0 cos(2πt/T ), coupled to the Roessler system. (b)

Illustration of various cases for the situation in which a signal, consisting of the sum

of two equal amplitude sinusoids, s(t) = A cos(2πt/T1) + A cos(2πt/T2), is coupled

with the Roessler system [T1 < T2, Tf = 2T1T2/(T1 + T2)]. The bold horizontal lines

represent the range of T over which phase synchronism occurs for a single sinusoidal

signal of amplitude A0 = A.
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Figure 2.2: Graphical illustration of the definition of geometrical phase φ(t) for a

chaotic orbit.

be written in an alternate form,

s(t) = (A1 + A2) cos[(ω1 + ω2)t/2] cos[(ω1 − ω2)t/2]

+(A2 − A1) sin[(ω1 + ω2)t/2] sin[(ω1 − ω2)t/2]. (2.3)

In most of our numerical work we have considered the case of equal amplitudes

A1 = A2 = A = 0.06. (Later we will discuss the case where A1 and A2 are different.)

From (2.3), the entraining signal s(t) can be regarded as a modulated wave, a “fast

wave” at the mean frequency

ωf = (ω1 + ω2)/2

modulated by a “slow wave” at the frequency

ωs = (ω1 − ω2)/2,

where, for A1 = A2 = A, the modulating slow wave is

9



Table 2.1: Parameter values T1 and T2

case T1 T2

i) 5.95 5.99

ii) 5.90 5.99

iii) 5.00 7.40

iv) 5.00 5.99

v) 5.00 5.50

Â(t) = 2A cos[(ω1 − ω2)t/2].

In our numerical experiments (ω1 + ω2) � (ω1 − ω2) > 0. Three periods will prove

relevant: T1,2 = 2π/ω1,2 and Tf = 2π/ωf = 2T1T2/(T1 + T2). The geometrical phase

of an orbit (Fig. 2.2) is given by tan φ(t) = [y(t)/x(t)] where the relevant branch of

tan φ(t) = [y(t)/x(t)] is determined by the previously mentioned definition of φ(t)

as continuous in t; see Sec. 1. We investigate how φ(t) is related to the phases of the

sinusoidal signals φ1,2 = ω1,2t as well as to the phase based on the mean frequency

φf = ωf t. As in previous studies, the phase differences,

�φ1,2,f(t) = φ(t) − φ1,2,f ,

are used to test phase synchronism between the chaotic orbits of our driven Roessler

system (2.1), (2.2) and one of the three phases φ1, φ2 or φf .

We note that synchronism at φf = 1
2
(ω1+ω2)t can be viewed as a special case of the

general situation where lφ synchronizes with mφ1+nφ2, where l, m and n are integers.

In this framework, synchronism with φf corresponds to l = 2 and m = n = 1.

10
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Figure 2.3: (a1,2) Difference between the geometrical phase of the attractor φ and

the phase of the first/second sinusoidal signal φ1,2 versus time t/Tf . (b1,2) His-

togram approximations of the distribution functions P (�Φ1,2), where �Φ1,2 =

[�φ1,2/(2π)] modulo1. (c1,2) Stroboscopic sections at times t = nT1,2 (n is an in-

teger) through the perturbed Roessler attractor, Eqs. (1) and (2).

2.3 Results

We now report and discuss results of computations for several different choices of the

parameters T1 and T2. These results serve to illustrate the main qualitative behaviors

that we have found. In particular, we consider the five sets of parameter values given in

Table 1. For each of the parameter sets of Table 1 the disposition of the values T1, T2

and Tf with respect to the tongue of perfect phase synchronism for a single frequency

driving signal is illustrated schematically in Figs. 2.1(b)-2.1(f). We first give a detailed

account for case (i) followed by brief descriptions of the results for the other cases.
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2.3.1 Case (i)

In this case there are clear intervals of time, lasting many rotations of φ or φ1,2,f [note

that (ω1 − ω2)/ωf � 1], when φ is entrained by φ2. In such a time interval, the

fluctuation of �φ2/(2π) is limited to within a narrow range, while

�φ1/(2π) = �φ2/(2π) − (ω1 − ω2)t/(2π)

decreases with time at an average rate (ω1 − ω2)/(2π). This behavior is seen in

Figs. 2.3(a1) and 2.3(a2) which show �φ1/(2π) and �φ2/(2π) versus φf/(2π) =

t/Tf over a range representing over 104 rotations of φf . Refering to Fig. 2.3(a2),

plateaus representing locking of φ to φ2 are clearly evident and are indicated on the

figure by arrowheads (the longest of these plateaus represents approximately 500 ro-

tations of φf ). We also note that each plateau is centered at a value of �φ2/(2π)

that is larger than that for the previous plateau by an integer. That is, φ slips rel-

ative to φ2 by an integer number of complete rotations between plateaus. [By the

arrowheads in Fig. 2.3(a2) we have considered a plateau to exist if it is at least as

wide as Ts/2 = 2π/(ω1 − ω2), i.e., half the period of the slow wave.] Refering

to Fig. 2.3(a1), we see that the graph of �φ1/(2π) versus φf/(2π) = t/Tf appears

to consist of intervals of approximate linear decrease (with superposed fluctuations)

at a slope −(ω1 − ω2)/ωf separated by glitches. The intervals of time correspond-

ing to apparent linear decrease of �φ1/(2π) coincide with the plateaus of �φ2/(2π),

while the glitches in �φ1/(2π) coincide with the time intervals between the plateaus

of �φ2/(2π). Alternatively, one may consider these glitches to be narrow plateaus

of �φ1/(2π). A close examination of Fig. 2.3(a1) also shows that the average val-

ues of �φ1/(2π) corresponding to these narrow plateaus differ by integers. φ slips

12
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Figure 2.4: (a) �φ2/(2π) versus �φ1/(2π). The staircase-like structure indicates that

there are alternating time intervals in which φ is locked to either φ1 or to φ2. (b) Detail

of Figure 4(a).

relative to φ1 by an integer number of complete rotations between plateaus. Thus in

the competition between φ1 and φ2 to entrain φ, there are intervals when φ1 wins and

intervals when φ2 wins, but, overall, φ2 is a stronger entrainer that φ1. This is also indi-

cated in Figs. 2.3(a1) and 2.3(a2) by the fact that, in the same time interval, �φ1 goes

through more that 30 rotations, while �φ2 only goes through 9. [The relative entrain-

ing strengths of φ1 and φ2 depend on the locations of T1 and T2 within the tongue in

Fig. 2.1(a).] Figure 2.4(a) graphs �φ1 versus �φ2. The staircase-like structure shows

that when �φ1 varies, �φ2 is aproximately constant and vice versa; the approximately

horizontal portions of the graph correspond to plateaus of �φ2 and the approximately

13



vertical portions correspond to plateaus of �φ1. This supports the picture whereby we

can think of the chaotic oscillator as making transitions between two states of locking

with the phases φ1,2 of the competing signals.

Figures 2.3(b1) and 2.3(b2) show histogram approximations of the probability dis-

tributions of �Φ1 ≡ �φ1/(2π) modulo 1 and, respectively, �Φ2 ≡ �φ2/(2π) mod-

ulo 1 [16]. The purpose of these figures is to demostrate that statistically significant

correlations between φ and φ1,2 can be found. That is, each of the phases φ1 and φ2

weakly synchronize the chaotic attractor. [In the absence of any coupling between φ

and φ1,2 these graphs would be flat, P (�Φ1,2) = 1.]

Figures 2.3(c1) and 2.3(c2) show stroboscopic surfaces of section at the peri-

ods T1 and, respectively, T2. For each point on a long trajectory we plot r versus

[φ modulo4π]/ω1,2 − t. This gives a picture of the density of the strobed points on

the attractor. Both Figs. 2.3(c1) and 2.3(c2) show alternating regions of high and low

density of points. (One should imagine an infinite periodic chain of such regions from

which we only plotted two periods.) The high density regions represent regions where

the orbit spends a long time. The low density regions are regions that the orbit traverses

relatively fast. Therefore, the plateaus of Figs. 2.3(a1) [respectively, Fig. 2.3(a2)] cor-

respond to regions with high density in Fig. 2.3(c1) [respectively, Fig. 2.3(c2)]. The

times when φ slips with respect to φ1,2 generate regions of low density. The fact that,

when Fig. 2.3(c1) has a low density region, Fig. 2.3(c2) has a high density region

corresponds to the fact that when φ slips with respect to φ1, it locks with respect to φ2.

We now consider the possibility of phase synchronism of our system with the fast

wave phase φf = ωf t. Using (2.3), we think of s(t) as a sinusoid entraining at the

period Tf (the period of the fast wave) slowly modulated at the period Ts (the period

of the slow wave). When the amplitude Â of the fast wave becomes smaller than

14
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phase
difference

Figure 2.5: Particle in sinusoidal potential: (a) at minimum potential, (b) at maximum

potential after the sign change of the potential.

the threshold Ath set by the synchronization tongue at Tf [see Fig. 2.1(a)], the chaotic

attractor tends [17] to lose synchronization and slip with respect to the phase of the fast

wave. The synchronization condition |Â| > Ath implies that the attractor tends to lose

synchronization as Â drops below Ath but tends to synchronize as Â decreases through

−Ath. Let τ denote the duration of a time interval during which |Â| < Ath in a slow

wave period Ts. If we consider the phase φ′(t) of the free running Roessler system (i.e.,

Eqs. (2.1)-(2.3) with Â = 0), then, during the time τ , the phase difference φ′(t) − ωf t

is found to change by less than π. Thus, during a time interval τ , we expect that there

is not sufficient time for �φf to drift as much as 2π before resynchronizing after |Â|
exceeds Ath. Thus, we anticipate that slips of �φf are solely due to the change in sign

of Â. These slips are expected to be ±π. In order to see this, we make a crude analogy,

and consider a particle in the vicinity of a potential minimum in a sinusoidal potential

[analogous to the fact that the phase φ(t) is in the vicinity of φf(t)]; see Fig. 2.5(a).

If we now change the sign of the potential, then the particle finds itself at the top of a
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tribution function P (�Φf), where �Φf = [�φf/(2π)], modulo1.

potential hill, and (assuming appropriate friction) will take some time to evolve to one

of the adjacent minima situated at a phase of the potential that is ±π away [Fig. 2.5(b)].

By these considerations, we can expect that the graph of �φf versus time will display

plateaus of synchronization and slips of π up or down occurring twice every period

of the slow wave. This is illustrated in Fig. 2.6(a) which shows how �φf varies with

time for several periods of the slow wave. s(t) is plotted as the grey background for

convenience. To guide the eye, dotted horizontal lines separated by a change of π in

�φf are drawn through the plateaus.

Fig. 2.6(b) displays �φ1(t) and �φ2(t) in the same range of time as in Fig. 2.6(a).

Comparison of Figs. 2.6(a) and 2.6(b) reveals that time intervals of locking with the

phase of the fast wave φf with π slips down correspond with the time of locking with

the phase φ2, while time intervals of locking with the phase of the fast wave φf with

π slips up correspond with the time of locking with the phase φ1. We also remark that

when �φf has a plateau, �φ1,2 drifts slowly at the rate ωf − ω1,2 with superimposed

fluctuations. During the time when �φf slips down, �φ2 may stay locked. For ex-
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ample, see Fig. 2.6(b) which shows �φ2/(2π) to be in a plateau for t/Tf < 1100. In

this range, the graph of �φ2/(2π) versus t/Tf has a roughly sawtooth-like structure,

with an upward drift with slope (ωf − ω2)/ωf during the plateaus of �φf and rapid

decrease between the plateaus of �φf .

Fig. 2.7(a) shows �φf over a much longer time scale than is plotted in Fig. 2.6(a).

Refering to Fig. 2.4(a) and noting that [�φ1/(2π) + �φ2/(2π)]/2 = �φf/(2π) and

[�φ1/(2π)−�φ2/(2π)]/2 = t/Ts, it is seen that a π/4 rotation and a change of scale

converts Fig. 2.4(a) to Fig. 2.7(a). In these coordinates [Fig. 2.4(a)], the jumps along

the horizontal and vertical axis are integers. A close inspection of Fig. 2.4(a) reveals

that the plateaus of �φ2/(2π) plotted versus �φ1/(2π) are not entirely flat. They have

a rough saw-tooth structure in which saw-tooth segments of slope −1 correspond to

the times of locking of φ with φf (such locking implies �φ1 +�φ2 ∼ constant). This

is indicated by the blow-up, Fig. 2.4(b), where dashed lines of slope -1 going through

the plateaus of locking with φf are shown. These lines are separated by 1/2, corre-

sponding to the ±π slips in Fig. 2.6(a). Fig. 2.7(b) shows a histogram approximation

of the probability distribution of �Φf ≡ �φf/(2π) modulo 1 demonstrating that the

phase of the attractor φ weakly synchronizes with φf . The probability distribution of

�Φf in Fig. 2.7(b) has two maxima 0.5 apart because �φf undergoes ±π jumps. This

is in contrast with the probability distributions for �φ1,2 which have only one maxi-

mum, corresponding to the fact that �φ1,2 undergo ∓2π jumps, respectively.

2.3.2 Other Cases

Case (ii) In this case, (A1, T1) is outside the single sinusoid synchronization tongue,

while (A2, T2) and (Â, Tf) are inside. Histogram approximations to the distributions
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Figure 2.8: Results for case (iii). (a,b,c) Histogram approximations of the distribution

functions P (�Φ1,2,f), where �Φ1,2,f = [�φ1,2,f/(2π)] modulo1.

P (�Φ1), P (�Φ2), and P (�Φf) (figures not included) all differ significantly from the

flat distribution and look very similar with those for case (i) in Figs. 2.3(b1), 2.3(b2),

and 2.7(b), respectively. Thus, some degree of synchronization of the chaotic system

with all phases φ1, φ2, and φf is manifest. In addition, plots of �φ1, �φ2, and �φf

versus time (not included) look very similar to those in Figs. 2.3(a1), 2.3(a2), and

2.7(a). However, in comparison with case (i), there is significantly enhanced tendency

for synchronization with phase φ2 as opposed to φ1. The plateaus of �φ2 are longer

(in average) and the plateaus of �φ1 are shorter than in the case (i). �φf/(2π) still

shows plateaus of synchronization but mostly slips up corresponding with the fact that

almost all the time φ2 synchronizes the orbit. At times, �φf/(2π) also shows slips

down, corresponding to the little bit of time the orbit spends synchronized with φ1.

Case (iii) In this case, (A1 = A2 = A, Tf ) lies inside the single sinusoid synchro-

nization tongue, while (A1, T1) and (Â, Tf) are outside. Figure 2.8 shows histogram

approximations to the distributions P (�Φ1) [Fig. 2.8(a)], P (�Φ2) [Fig. 2.8(b)], and

P (�Φf) [Fig. 2.8(c)]. We see that P (�Φ1) and P (�Φ2) are nearly flat, indicating
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Figure 2.9: Results for case (iv). (a) �φ1/(2π) and �φ2/(2π) versus time t/Tf .

(b,c,d) Histogram approximations of the distribution functions P (�Φ1,2,f), where

�Φ1,2,f = [�φ1,2,f/(2π)] modulo1.
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Figure 2.10: Results for case (v). (a,b,c) Histogram approximations of the distribution

functions P (�Φ1,2,f), where �Φ1,2,f = [�φ1,2,f/(2π)] modulo1.

very small, or negligible synchronization with phases φ1 and φ2. In contrast, P (�Φf)

shows two significant peaks separated by 0.5 in �Φf . This is similar to the plot of

P (�Φf) for case (i) shown in Fig. 2.7(b). In addition, plots of �φ1 and �φ2 ver-

sus time (not included) show nearly steady linear drift, while a plot of �φf versus

time (also not included) evidences periods of locking similar to Fig. 2.7(a) for case (i).

Thus, for case (iii), we conclude that there is negligible synchronization of the system

with the phases φ1 and φ2, but that there is significant synchronization with φf .

Case (iv) This case has only (A2, T2) inside the synchronization tongue, while (A1, T1)

and (Â, Tf) are outside. Figures 2.9(b), 2.9(c), and 2.9(a), respectively, show his-

togram approximations to the distributions P (�Φ1), P (�Φ2), and P (�Φf). We

remark that P (�Φ1) and P (�Φf) are almost flat, indicating little synchronization

of the chaotic system with phases φ1 and φf . On the other hand, P (�Φ2) shows a

big peak, suggesting synchronization with phase φ2. Accordingly, the graphs of �φ1

[Fig. 2.9(a)] and �φf versus time (not included) show nearly steady linear drift, while

the graph of �φ2 [Fig. 2.9(a)] versus time shows very long plateaus of sychronization,
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indicative of strong phase synchronism (see Sec. 1). These results can be understood

by noting that, by construction, case (iv) has (A2, T2) inside the single sinusoid syn-

chronization tongue, while (A1, T1) and (Â, Tf) are outside.

Case (v) In this case we have all (A1, T1), (A2, T2) and (Â, Tf) outside the sin-

gle sinusoid synchronization tongue. Figure 2.10 shows that histogram approxima-

tions to the distributions P (�Φ1) [Fig. 2.10(a)], P (�Φ2) [Fig. 2.10(b)], and P (�Φf)

[Fig. 2.10(c)] are all nearly flat, indicating negligible synchronization with phases φ1,

φ2 and φf , respectively. Plots of �φ1, �φ2, and �φf versus time (not included) shown

nearly steady linear drift. These results are not surprising since, in this case, (A1, T1),

(A2, T2), and (Â, Tf ) are far outside the single sinusoid synchronization tongue.

We have also investigated a few cases where A1 and A2 are unequal. For example,

for the values of T1, T2 and A2 = 0.06 used in case (i), we did computations for

A1 = 0.01 and A2 = 0.03. In the former case, (A1, T1) is not in the synchronization

tongue, and the phenomena observed are very similar to that in the case (iv) above. In

the case A1 = 0.03 (here (A1, T1) is inside the synchronization tongue) we see results

similar to that in case (i), but with much reduced tendency for locking with phase φ1.

2.4 Further Discussions and Conclusions

Even though our two frequency signal s(t) is much simpler than entraining signals

typically encountered in experiments [9, 12], we believe that it offers an important

lesson regarding the understanding of synchronization by entrainers with complicated

continuous frequency spectra. Data analysis of numerical and experimental results

[8, 9, 12] shows that one can assign a phase to a signal (for the pupose of detecting
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phase synchronization of chaotic systems) by either bandpass filtering or by the use

of the Hilbert transform. It has been found in experiments that the detection of phase

synchronism can be enhanced by bandpass filtering [9, 12]. If we were to apply a

bandpass filter to our two frequency signal s(t), then, assuming a filter bandwidth less

than (ω1−ω2), we would pick either the sinusoid at ω1 or the sinusoid at ω2, depending

on the center frequency of the bandpass filter. Thus the phase of the filtered signal

would be either φ1 or φ2. Alternatively, consider the case where we do no filtering and

use the Hilbert transform technique, as advocated in [8], to produce s̃(t), the complex

“analytic signal” corresponding to s(t). This yields

s̃(t) = A1 exp(iω1t) + A2 exp(iω2t).

The associated “Hilbert phase”, φH , is:

tanφH =
Im[s̃(t)]

Re[s̃(t)]
=

A1 sin(ω1t) + A2 sin(ω2t)

A1 cos(ω1t) + A2 cos(ω2t)
.

For A1 = A2, this gives tan φH = tan[(ω1+ω2)t/2], or (φH modulo π) = (φf modulo π)

[18]. Thus by filtering we obtain φ1 or φ2, while by not filtering and using the Hilbert

phase we obtain φf modulo π (for A1 = A2). Which procedure is best? The answer to

this question depends on circumstances. For example, in our cases (i), (ii) and (iv) syn-

chronism with φ2(t) is strong and clearly manifest; if a continuous spectrum had such

a case, filtering might be thought to clean up the phase and make phase synchronism

more apparent (as indeed has been found in some experiments [9, 12]). If, however,

the situation is more like that of case (iii), where the only detectable synchronism is

with φf , then narrow bandpass filtering (which yields φ1 or φ2) would not reveal any

synchronism, while applying the Hilbert transform to the unfiltered signal would re-

veal synchronism.
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In conclusion, we have investigated the situation in which two sinusoidal signals

compete to phase synchronize a chaotic oscillator. We find and illustrate several pos-

sible outcomes of this situation:

1. Phase synchronism can be descerned to be present to some degree for both sinu-

soides as well as for the mean phase of the sinusoides, φf [cases (i) and (ii)].

2. Phase synchronism can be descernable only for the mean phase [case(iii)].

3. Phase synchronism is descernable only for one of the sinusoids [case(iv)].
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Chapter 3

Saddle-Node Bifurcations on a Fractal Basin Boundary
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3.1 Preliminaries

It is common for dynamical systems to have two or more coexisting attractors. In pre-

dicting the long-term behavior of a such a system, it is important to determine sets of

initial conditions of orbits that approach each attractor (i.e., the basins of attraction).

The boundaries of such sets are often fractal ([19], Chapter 5 of [20], and references

therein). The fine-scale fractal structure of such a boundary implies increased sensitiv-

ity to errors in the initial conditions: Even a considerable decrease in the uncertainty of

initial conditions may yield only a relatively small decrease in the probability of mak-

ing an error in determining in which basin such an initial condition belongs [19, 20].

For discussion of fractal basin boundaries in experiments, see Chapter 14 of [21].

Thompson and Soliman [22] showed that another source of uncertainty induced

by fractal basin boundaries may arise in situations in which there is slow (adiabatic)

variation of the system. For example, consider a fixed point attractor of a map (a

node). As a system parameter varies slowly, an orbit initially placed on the node

attractor moves with time, closely following the location of the solution for the fixed

point in the absence of the temporal parameter variation. As the parameter varies, the

node attractor may suffer a saddle-node bifurcation. For definiteness, say that the node

attractor exists for values of the parameter µ in the range µ < µ∗, and that the saddle-

node bifurcation of the node occurs at µ = µ∗. Now assume that, for a parameter

interval [µL, µR] with µL < µ∗ < µR, in addition to the node, there are also two other

attractors A and B, and that the common boundary of the basin of attractor A, attractor

B and the node is a fractal basin boundary. We are interested in the typical case where,

before the bifurcation, the saddle lies on the fractal basin boundary, and thus, at the

bifurcation, the merged saddle-node orbit is on the basin boundary. In such a case an

arbitrarily small ball about the saddle-node at µ = µ∗ contains pieces of the basins
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of both A and B. Thus, as µ slowly increases through µ∗, it is unclear whether the

orbit following the node will go to A or to B after the node attractor is destroyed by

the bifurcation. In practice, noise or round-off error may lead the orbit to go to one

attractor or the other, and the result can often depend very sensitively on the specific

value of the slow rate at which the system parameter varies.

We note that the study of orbits swept through an indeterminate saddle-node bifur-

cation belongs to the theory of dynamical bifurcations. Many authors have analyzed

orbits swept through other bifurcations, like the period doubling bifurcation [23], the

pitchfork bifurcation [24, 25], and the transcritical bifurcation [25]. In all these stud-

ies of the bifurcations listed above, the local structure before and after the bifurcation

includes stable invariant manifolds varying smoothly with the bifurcation parameter

(i.e., a stable fixed point that exists before or after the bifurcation, and whose location

varies smoothly with the bifurcation parameter). This particular feature of the local

bifurcation structure, not shared by the saddle-node bifurcation, allows for well-posed,

locally defined, problems of dynamical bifurcations. The static saddle-node bifurca-

tion has received much attention in theory and experiments [26, 27, 28], but so far, no

dynamical bifurcation problems have been defined for the saddle-node bifurcation. In

this study, we demonstrate that, in certain common situations, global structure (i.e.,

an invariant Cantor set or a fractal basin boundary) adds to the local properties of the

saddle-node bifurcation and allows for well-posed problems of dynamical bifurcations.

Situations where a saddle-node bifurcation occurs on a fractal basin boundary

have been studied in two dimensional Poincaré maps of damped forced oscillators

[22, 29, 30]. Several examples of such systems are known [22, 30], and it seems that

this is a common occurence in dynamical systems. In this chapter, we first focus on

saddle-node bifurcations that occur for one parameter families of smooth one dimen-
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sional maps having multiple critical points (a critical point is a point at which the

derivative of the map vanishes). Since one dimensional dynamics is simpler than two

dimensional dynamics, indeterminate bifurcations can be more simply studied, without

the distraction of extra mathematical structure. Taking advantage of this, we are able

to efficiently investigate several scaling properties of these bifurcations. In particular,

we investigate the scaling of (1) the fractal basin boundary of the static (i.e., unswept)

system near the saddle-node bifurcation (Secs. 3.2.2 and 3.2.3), (2) the dependence of

the orbit final destination on the sweeping rate (Sec. 3.2.4), (3) the dependence of the

time it takes for an attractor to capture the swept orbit following the bifurcation on the

sweeping rate (Sec. 3.2.5), and (4) the dependence of the final attractor capture prob-

ability on the noise level (Sec. 3.2.6). Following our one-dimensional investigations,

we explain that these results apply to two dimensional systems. We show, through

numerical experiments on the periodically forced Duffing oscillator, that the scalings

we have found also apply to higher dimensional systems (Sec. 3.3).

For one-dimensional maps, a situation dynamically similar to that in which there is

indeterminacy in which attractor captures the orbit can also occur in cases where there

are two rather than three (or more) attractors (Sec. 3.4). In particular, we can have the

situation where one attractor persists for all values of the parameters we consider, and

the other attractor is a node which is destroyed via a saddle-node bifurcation on the

basin boundary separating the basins of the two attractors. In such a situation, an orbit

starting on the node, and swept through the saddle-node bifurcation, will go to the

remaining attractor. It is possible to distinguish different ways that the orbit initially

on the node approaches the remaining attractor. We find that the way in which this

attractor is approached can be indeterminate.
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Figure 3.1: Construction of the function fµ(x) starting with (a) the third iterate of

the logistic map, g(x) = r x(1 − x), with r = 3.832, and adding a perturbation (b)

µ sin(3πx) (µ = 5.4 × 10−3).

3.2 Indeterminacy in Which Attractor Is Approached

We consider the general situation of a one dimensional real map fµ(x) depending on a

parameter µ. We assume the following: (1) the map is twice differentiable with respect

to x, and once differentiable with respect to µ (the derivatives are continuous); (2) fµ

has at least two attractors sharing a fractal basin boundary for parameter values in the

vicinity of µ∗; and (3) an attracting fixed point x∗ of the map fµ(x) is destroyed by a

saddle-node bifurcation as the parameter µ increases through a critical value µ∗, and

this saddle-node bifurcation occurs on the common boundary of the basins of the two

attractors.

We first recall the saddle-node bifurcation theorem (see for example [26]). If the

map fµ(x) satisfies: (a) fµ∗(x∗) = x∗, (b) ∂fµ∗
∂x

(x∗) = 1, (c) ∂2fµ∗
∂2x

(x∗) > 0, and (d)
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Figure 3.2: (a) Basin structure of the map fµ versus the parameter µ on the horizontal

axis (0 ≤ µ ≤ 5.4 × 10−3 and 0 ≤ x ≤ 1). The attractor having the blue basin is

destroyed at µ ≈ 2.79× 10−3. (b) Detail of the region shown as the white rectangle in

Fig. 3.2(a), 2.75 × 10−3 ≤ µ ≤ 3.55 × 10−3 and 0.145 ≤ x ≤ 0.163.

∂f
∂µ

(x∗; µ∗) > 0, then the map fµ undergoes a backward saddle-node bifurcation (i.e.,

the node attractor is destroyed at x∗ as µ increases through µ∗). If the inequality in

either (c) or (d) is reversed, then the map undergoes a forward saddle-node bifurcation,

while, if both these inequalities are reversed, the bifurcation remains backward. A

saddle-node bifurcation in a one dimensional map is also called a tangent or a fold

bifurcation.

3.2.1 Model

As an illustration of an indeterminate saddle-node bifurcation in a one-dimensional

map, we construct an example in the following way. We consider the logistic map for

a parameter value where there is a stable period three orbit. We denote this map g(x)
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and its third iterate g [3](x). The map g[3](x) has three stable fixed points. We perturb

the map g[3](x) by adding a function (which depends on a parameter µ) that will cause

a saddle-node bifurcation of one of the attracting fixed points but not of the other two

[see Figs. 3.1(a) and 3.1(b)]. We investigate

fµ(x) = g[3](x) + µ sin(3πx), where g(x) = 3.832 x(1 − x). (3.1)

Numerical calculations show that the function fµ(x) satisfies all the conditions of

the saddle-node bifurcation theorem for having a backward saddle-node bifurcation

at x∗ ≈ 0.15970 and µ∗ ≈ 0.00279. Figure 3.2(a) displays how the basins of the three

attracting fixed points of the map fµ change with variation of µ. For µ = 0 the third

iterate of the logistic map is unperturbed, and it has three attracting fixed points whose

basins we color-coded with blue, green and red. For every value of µ, the red region

R[µ] is the set of initial conditions attracted to the rightmost stable fixed point which

we denote Rµ. The green region G[µ] is the set of initial conditions attracted to the

middle stable fixed point which we denote Gµ. The blue region B[µ] is the set of initial

conditions attracted to the leftmost stable fixed point which we denote Bµ.

For µ < µ∗, each of these colored sets has infinitely many disjoint intervals and a

fractal boundary. As µ increases, the leftmost stable fixed point Bµ is destroyed via a

saddle-node bifurcation on the fractal basin boundary. In fact, in this case, for µ < µ∗,

every boundary point of one basin is a boundary point for all three basins. (That is,

an arbitrarily small x-interval centered about any point on the boundary of any one

of the basins contains pieces of the other two basins.) The basins are so-called Wada

basins [31]. This phenomenon of a saddle-node bifurcation on the fractal boundary of

Wada basins also occurs for the damped forced oscillators studied in Refs. [29, 30].

Alternatively, if we look at the saddle-node bifurcation as µ decreases through the

value µ∗, then the basin B[µ] of the newly created stable fixed point immediately has
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Figure 3.3: Fractal dimension of the basin boundary versus µ. Notice the continuous

variation for µ < µ∗ and the discontinuous jump at µ∗, the parameter value at which

the saddle-node bifurcation on the fractal basin boundary takes place.

infinitely many disjoint intervals and its boundary displays fractal structure. According

to the terminology of Robert et al. [32], we may consider this bifurcation an example

of an ‘explosion’.

3.2.2 Dimension of the Fractal Basin Boundary

Figure 3.3 graphs the computed dimension D of the fractal basin boundary versus the

parameter µ. For µ < µ∗, we observe that D appears to be a continuous function of

µ. Park et al. [33] argue that the fractal dimension of the basin boundary near µ∗, for

µ < µ∗, scales as

D(µ) ≈ D∗ − k(µ∗ − µ)1/2, (3.2)

with D∗ the dimension at µ = µ∗ (D∗ is less than the dimension of the phase space),

and k a positive constant. Figure 3.3 shows that the boundary dimension D experiences
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a discontinuous jump at the saddle-node bifurcation when µ = µ∗. We believe that this

is due to the fact that the basin B[µ] suddenly disappears for µ > µ∗.

The existence of a fractal basin boundary has important practical consequences. In

particular, for the purpose of determining which attractor eventually captures a given

orbit, the arbitrarily fine-scaled structure of fractal basin boundaries implies consid-

erable sensitivity to small errors in initial conditions. If we assume that initial points

cannot be located more precisely than some ε > 0, then we cannot determine which

basin a point is in, if it is within ε of the basin boundary. Such points are called ε-

uncertain. The Lebesgue measure of the set of ε-uncertain points (in a bounded region

of interest) scales like εD0−D, where D0 is the dimension of the phase space (D0 = 1

for one dimensional maps) and D is the box-counting dimension of the basin bound-

ary [19]. For the case of a fractal basin boundary (D0 − D) < 1. When D0 − D

is small, a large decrease in ε results in a relatively small decrease in εD0−D. This is

discussed in Ref. [19] which defines the uncertainty dimension, Du, as follows. Say

we randomly pick an initial condition x with uniform probability density in a state-

space region S. Then we randomly pick another initial condition y in S, such that

|y − x| < ε. Let p(ε, S) be the probability that x and y are in different basins. [We can

think of p(ε, S) as the probability that an error will be made in determing the basin of

an initial condition if the initial condition has uncertainty of size ε.] The uncertainty

dimension of the basin boundary Du is defined as the limit of ln p(ε, S)/ ln(ε) as ε

goes to zero [19]. Thus, the probability of error scales as p(ε, S) ∼ εD0−Du , where for

fractal basin boundaries D0 − Du < 1. This indicates enhanced sensitivity to small

uncertainty in initial conditions. For example, if D0−Du = 0.2, then a decrease of the

initial condition uncertainty ε by a factor of 10 leads to only a relative small decrease

in the final state uncertainty p(ε, S), since p decreases by a factor of about 100.2 ≈ 1.6.
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Thus, in practical terms, it may be essentially impossible to significantly reduce the

final state uncertainty. In Ref. [19] it was conjectured that the box-counting dimension

equals the uncertainty dimension for basin boundaries in typical dynamical systems.

In Ref. [35] it is proven that the box-counting dimension, the uncertainty dimension

and the Hausdorff dimension are all equal for the basin boundaries of one and two

dimensional systems that are uniformly hyperbolic on their basin boundary.

We now explain some aspects of the character of the dependence of D on µ (see

Fig. 3.3). From Refs. [36] it follows that the box-counting dimension and the Haus-

dorff dimension coincide for all intervals of µ for which the map fµ is hyperbolic on

the basin boundary, and that the dimension depends continuously on the parameter µ

in these intervals. For µ > µ∗, there are many parameter values for which the map has

a saddle-node bifurcation of a periodic orbit on the fractal basin boundary. At such

parameter values, which we refer to as saddle-node bifurcation parameter values, the

dimension is expected to be discontinuous (as it is at the saddle-node bifurcation of

the fixed point, µ = µ∗, see Fig. 3.3). In fact, there exist sequences of saddle-node

bifurcation parameter values converging to µ∗ [34]. Furthermore, for each parameter

value µ > µ∗ for which the map undergoes a saddle-node bifurcation, there exists

a sequence of saddle-node bifurcation parameter values converging to that parameter

value. The basins of attraction of the periodic orbits created by saddle-node bifurca-

tions of high period exist only for very small intervals of the parameter µ. We did not

encounter them numerically by iterating initial conditions for a discrete set of values

of the parameter µ, as we did for the basin of our fixed point attractor.
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Figure 3.4: (a) Detail of Figure 3.2(b), with the horizontal axis changed from µ to

(µ−µ∗)−1/2 for µ > µ∗; 2.75× 10−3 ≤ µ ≤ 3.55× 10−3 and 0.145 ≤ x ≤ 0.163 The

green stripes from Fig. 3.2(b) are colored black and the red stripes are colored white.

The approximate position of the point x∗ where the saddle-node bifurcation takes place

is shown. xc indicates the nearest critical point. (b) Detail of Fig. 3.3, displaying how

the box dimension D of the fractal basin boundary varies with 1/(µ∗ − µ)1/2. The

horizontal axis of Figs. 3.4(a) and 3.4(b) are identical.
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3.2.3 Scaling of the Fractal Basin Boundary

Just past µ∗, the remaining green and red basins display an alternating stripe struc-

ture [see Fig. 3.2(b)]. The red and green stripes are interlaced in a fractal structure.

As we approach the bifurcation point, the interlacing becomes finer and finer scaled,

with the scale approaching zero as µ approaches µ∗. Similar fine scaled structure is

present in the neighborhood of all preiterates of x∗. If one changes the horizontal axis

of Figs. 3.2(a,b) from µ to (µ − µ∗)−1/2, then, the complex alternating stripe struc-

ture appears asymptotically periodic [see Fig. 3.4(a)]. [Thus, with identical horizontal

scale, the dimension plot in Fig. 3.4(b) appears asymptotically periodic, as well.] We

now explain why this is so. We restrict our discussion to a small neighborhood of x∗.

Consider the second order expansion of fµ in the vicinity of x∗ and µ∗

f̂µ̂(x̂) = µ̂ + x̂ + ax̂2, where




x̂ = x − x∗,

µ̂ = µ − µ∗,
(3.3)

and a ≈ 89.4315. The trajectories of f̂µ̂ in the neighborhood of x̂ = 0, for µ̂ close to

zero, are good approximations to trajectories of fµ in the neighborhood of x = x∗, for

µ close to µ∗. Assume that we start with a certain initial condition for f̂µ̂, x̂0 = x̂s, and

we ask the following question: What are all the positive values of the parameter µ̂ such

that a trajectory passes through a fixed position x̂f > 0 at some iterate n? For any given

xf which is not on the fractal basin boundary, there exists a range of µ such that iterates

of xf under fµ evolve to the same final attractor, for all values of µ in that range. In

particular, once ax̂2 appreciably exceeds µ̂, the subsequent evolution is approximately

independent of µ̂. Thus, we can choose x̂f � √
µ̂/a, but still small enough so that it

lies in the region of validity of the canonical form (3.3). There exists a range of such

x̂f values satisfying these requirements provided that |µ̂| is small enough.

Since consecutive iterates of f̂µ̂ in the neighborhood of x̂ = 0 for µ̂ close to zero
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both shown as dashed lines, and the intersections of the solid curves with x̂0 = 0 which
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differ only slightly, we approximate the one dimensional map,

x̂n+1 = f̂µ̂(x̂n) = µ̂ + x̂n + ax̂2
n, (3.4)

by the differential equation [27],

dx̂

dn
= µ̂ + ax̂2, (3.5)

where in (3.5) n is considered as a continuous, rather than a discrete, variable. Inte-

grating (3.5) from x̂s to x̂f yields

n
√

aµ̂ = arctan

(√
a

µ̂
x̂f

)
− arctan

(√
a

µ̂
x̂s

)
. (3.6)

Close to the saddle-node bifurcation (i.e., 0 < µ̂ � 1, and x̂s,f close to zero), f̂µ̂ is a

good approximation to fµ. For |x̂s,f |
√

(a/µ̂) � 1 Eq. (3.6) becomes

n
√

aµ̂ ≈ π. (3.7)
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The values of µ̂
−1/2
n satisfying Eq. (3.7) increase with n in step of

√
a/π. For our

example we have a ≈ 89.4315, thus
√

a/π ≈ 3.010. Counting many periods like

those in Fig. 3.4 in the region of xc, the closest critical point to x∗ [see Fig. 3.4(a)], we

find that the period of the stripe structure is 3.015, which is in good agreement with

our theoretical value.

In order to investigate the structure of the fractal basin boundary in the vicinity of

the saddle-node bifurcation (i.e., x̂s close to x̂∗ = 0), we consider (3.6) in the case

where we demand only |x̂f |
√

(a/µ̂) � 1. Thus, Eq. (3.6) becomes

n
√

aµ̂ ≈ π

2
− arctan

(√
a

µ̂
x̂s

)
. (3.8)

Let µ̂
−1/2
n (x̂s) denote the solution of Eq. (3.8) for µ̂. Equation (3.8) implies the behav-

ior of µ̂
−1/2
n (x̂s) as function of x̂s and n as sketched in Fig. 3.5. For a fixed n, µ̂

−1/2
n

has a horizontal asymptote at the value n
√

a/π as x̂s → −∞, and a vertical asymptote

to infinity at x̂s = 1/(an). For x̂s < 0, we have an infinite number of values of the

parameter µ̂, for which an orbit of f̂µ̂ starting at x̂s passes through the same position

x̂f , after some number of iterations. For x̂s = 0 (i.e., xs = x∗), we also have an infinite

number of µ̂
−1/2
n (0), but with constant step 2

√
a/π rather than

√
a/π (see the intersec-

tions marked with black dots in the Fig. 3.5). This is hard to verify from numerics,

since ∂µ̂
−1/2
n

∂x̂s
(0) = a3/2(2n/π)2 increases with n2, and the stripes become very tilted in

the neighborhood of x̂s = x̂∗ = 0. [See Fig. 3.4(a), where the approximate positions

of xc and x∗ on the vertical axis are indicated.] For x̂s > 0, µ̂
−1/2
n has only a limited

number of values with nmax < 1/(ax̂0).
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Figure 3.6: (a) Final attracting state of swept orbits versus δµ. We have chosen µs =

µ̂s + µ∗ = 0, and µf = 4.5 × 10−3. The attractor Rµf
is represented by 1 and

the attractor Gµf
is represented by 0. (b) Detail of Fig. 3.6(b) with the horizontal

scale changed from δµ to 1/δµ. The structure of white and black bands becomes

asymptotically periodic. (c) Final state of orbits for the system f̂µ̂ versus 1/δµ. The

final state of an orbit is defined to be 0 if there exists n such that 100 < x̂n < 250, and

is defined to be 1, otherwise. We have chosen µ̂s = −µ∗, so that Figs. 3.6(b,c) have

the same asymptotic periodicity.
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3.2.4 Sweeping Through an Indeterminate Saddle-Node Bifurca-

tion

In order to understand the consequences of a saddle-node bifurcation on a fractal basin

boundary for systems experiencing slow drift, we imagine the following experiment.

We start with the dynamical system fµ at parameter µs < µ∗, with x0 on the attractor

to be destroyed at µ = µ∗ by a saddle-node bifurcation (i.e., Bµ). Then, as we iterate,

we slowly change µ by a small constant amount δµ per iterate, thus increasing µ from

µs to µf > µ∗,

xn+1 = fµn(xn), (3.9)

µn = µs + n δµ.

When µ ≥ µf we stop sweeping the parameter µ, and, by iterating further, we de-

termine to which of the remaining attractors of fµf
the orbit goes. Numerically, we

observe that, if (µf − µ∗) is not too small, then, by the time µf is reached, the orbit

is close to the attractor of fµf
to which it goes. [From our subsequent analysis, ‘not

too small |µs,f − µ∗|’ translates to choices of δµ that satisfy (δµ)2/3 � |µs,f − µ∗|.]
We repeat this for different values of δµ and we graph the final attractor position for

the orbit versus δµ [see Fig. 3.6(a)]. For convenience in the graphical representation

of Figs. 3.6(a,b), we have represented the attractor of the green region G[µ], denoted

Gµf
, as a 0, and the attractor of the red region R[µ], denoted Rµf

, as a 1. In Fig. 3.6(a)

we use of 25,000 points having the vertical coordinate either 0 or 1, which we con-

nect with straight lines. In an interval of δµ for which the system reaches the same

final attractor (either 0 or 1), the lines connecting the points are horizontal. Such inter-

vals appear as white bands in Fig. 3.6, if they are wider than the width of the plotted

lines connecting 0’s and 1’s. For example, in Fig. 3.6(a), the white band centered at
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δµ = 0.8 × 10−3 has at the bottom a thick horizontal line, which indicates that for the

whole of that interval, the orbit reaches the attractor Gµf
which we represented by 0.

Adjacent intervals of width less than the plotted lines appear as black bands. Within

such black bands, an uncertainty in δµ of size equal to the width of the plotted line

makes the attractor that the orbit goes to indeterminate. Figure 3.6(a) shows that the

widths of the white bands decrease as δµ decreases, such that, for small δµ, we see

only black.

If (µf − µ∗) is large enough (i.e., (δµ)2/3 � |µf − µ∗|), numerics and our sub-

sequent analysis show that Fig. 3.6 is independent of µf . This fact can be understood

as follows. Once µ = µf , the orbit typically lands in the green or the red basin of

attraction and goes to the corresponding attractor. Due to sweeping, it is possible for

the orbit to switch from being in one basin of attraction of the time-independent map

fµ to the other, since the basin boundary between G[µ] and R[µ] changes with µ. How-

ever, the sweeping of µ is slow (i.e., δµ is small), and, once (µ − µ∗) is large enough,

the orbit is far enough from the fractal basin boundary, and the fractal basin boundary

changes too little to switch the orbit between G[µ] and R[µ].

We also find numerically that Figs. 3.6(a,b) are independent of the initial condition

x0, provided that it is in the blue basin B[µs], sufficiently far from the fractal basin

boundary, and that |µs − µ∗| is not too small (i.e., (δµ)2/3 � |µs − µ∗|).
If one changes the horizontal scale of Fig. 3.6(a) from δµ to 1/δµ [see Fig. 3.6(b)],

the complex band structure appears asymptotically periodic. Furthermore, we find

that the period in (1/δµ) of the structure in Fig. 3.6(b) asymptotically approaches

−1/(µs − µ∗) as δµ becomes small.

In order to explain this result, we again consider the map f̂µ̂, the local approx-

imation of fµ in the region of the saddle-node bifurcation. Equations (3.9) can be
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approximated by

x̂n+1 = f̂µ̂n(x̂n) = µ̂n + x̂n + ax̂2
n, (3.10)

µ̂n = µ̂s + n δµ.

We perform the following numerical experiment. We consider orbits of our approxi-

mate two dimensional map given by Eq. (3.10) starting at x̂s = −√−µ̂s/a. We define

a final state function of an orbit swept with parameter δµ in the following way. It is 0

if the orbit has at least one iterate in a specified fixed interval far from the saddle-node

bifurcation, and is 1, otherwise. In particular, we take the final state of a swept orbit to

be 0 if there exists n such that 100 < x̂n < 250, and to be 1 otherwise. Figure 3.6(c)

graphs the corresponding numerical results. Similar to Fig. 3.6(b), we observe peri-

odic behavior in 1/δµ with period −1/µ̂s. In contrast to Fig. 3.6(b) where the white

band structure seems fractal, the structure within each period in Fig. 3.6(c) consists of

only one interval where the final state is 0 and one interval where the final state is 1.

This is because 100 < x̂ < 250 is a single interval, while the green basin [denoted 0

in Fig. 3.6(b)] has an infinite number of disjoint intervals and a fractal boundary (see

Fig. 3.2).

With the similarity between Figs. 3.6(b) and 3.6(c) as a guide, we are now in a

position to give a theoretical analysis explaining the observed periodicity in 1/δµ. In

particular, we now know that this can be explained using the canonical map (3.10),

and that the periodicity result is thus universal [i.e., independent of the details of our

particular example, Eq. (3.1)]. For slow sweeping (i.e., δµ small), consecutive iterates

of (3.10) in the vicinity of x̂ = 0 and µ̂ = 0 differ only slightly, and we further

42



approximate the system by the following Ricatti differential equation,

dx̂

dn
= µ̂s + nδµ + ax̂2. (3.11)

The solution of Eq. (3.11) can be expressed in terms of the Airy functions Ai and Bi

and their derivatives, denoted by Ai′ and Bi′,

x̂(n) =
ηAi′(ξ) + Bi′(ξ)
ηAi(ξ) + Bi(ξ)

(
δµ

a2

)1/3

, (3.12)

where

ξ(n) = −a1/3 µ̂s + n δµ

δµ2/3
, (3.13)

and η is a constant to be determined from the initial condition. We are only interested

in the case of slow sweeping, δµ � 1, and x̂(0) ≡ x̂s = −√−µ̂s/a (which is

the stable fixed point of f̂µ̂ destroyed by the saddle-node bifurcation at µ̂ = 0). In

particular, we will consider the case where µ̂s < 0 and |µ̂s| � δµ2/3 (i.e., |ξ(0)| � 1).

Using x̂(0) = −√−µ̂s/a to solve for η yields η ∼ O[ξ(0)e2ξ(0)] � 1. For positive

large values of ξ(n) (i.e., for n small enough), using the corresponding asymptotic

expansions of the Airy functions [37], the lowest order in δµ approximation to (3.12)

is

x̂(n) ≈ −
√

− µ̂s + n δµ

a
, (3.14)

with the correction term of higher order in δµ being negative. Thus, for n sufficiently

smaller than −µ̂s/δµ, the swept orbit lags closely behind the fixed point for f̂µ̂ with µ̂

constant. For ξ ≤ 0, we use the fact that η is large to approximate (3.12) as

x̂(n) ≈ Ai′(ξ)
Ai(ξ)

(
δµ

a2

)1/3

. (3.15)

Note that

x̂(−µ̂s/δµ) ≈ Ai′(0)

Ai(0)

(
δµ

a2

)1/3

= (−0.7290...)

(
δµ

a2

)1/3

(3.16)
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gives the lag of the swept orbit relative to the fixed point attractor evaluated at the

saddle-node bifurcation. Equation (3.15) does not apply for n > nmax, where nmax

is the value of n for which ξ(nmax) = ξ̃, the largest root of Ai(ξ̃) = 0 (i.e., ξ̃ =

−2.3381...). At n = nmax, the normal form approximation predicts that the orbit

diverges to +∞. Thus, for n near nmax, the normal form approximation of the dy-

namical system ceases to be valid. Note, however, that (3.15) can be valid even for

ξ(n) close to ξ(nmax). This is possible because δµ is small. In particular, we can

consider times up to the time n′ where n′ is determined by ξ ′ ≡ ξ(n′) = ξ̃ + δξ,

(δξ > 0 is small,) provided |x̂(n′)| � 1 so that the normal form applies. That is, we

require [Ai′(ξ′)/Ai(ξ′)](δµ/a2)1/3 � 1, which can be satisfied even if [Ai′(ξ′)/Ai(ξ′)]

is large. Furthermore, we will take the small quantity δξ to be not too small (i.e.,

δξ/(a δµ)1/3 � 1), so that (nmax − n′) � 1. We then consider (3.15) in the range,

−(µ̂s/δµ) ≤ n < n′, where the normal form is still valid.

We use Eq. (3.15) for answering the following question: What are all the val-

ues of the parameter δµ (δµ small) for which an orbit passes exactly through the

same position x̂f > 0, at some iterate nf? All such orbits would further evolve to

the same final attractor, independent of δµ, provided ax̂2
f � µ̂s + nf δµ; i.e., x̂f is

large enough that µ̂f = µ̂s + nf δµ does not much influence the orbit after x̂ reaches

x̂f . [Denote ξ(nf) as ξ(nf) ≡ ξf .] Using (3.15) we can estimate when this oc-

curs, ax̂2
f = [Ai′(ξf)/Ai(ξf)]

2(δµ2/a)1/3 � (µ̂s + nf δµ) or [Ai′(ξf)/Ai(ξf)]
2 � ξf .

This inequality is satisfied when ξf gets near ξ̃, which is the largest zero of Ai (i.e.,

ξf = ξ̃ + δξ, where δξ is a small positive quantity). We now rewrite Eq. (3.15) in the

following way

1

δµ
= − nf

µ̂s −
[

(δµ)2

a

]1/3

K

[(
a2

δµ

)1/3

x̂f

] , (3.17)
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Figure 3.7: Numerical results for the inverse of the limit period in 1/δµ versus µs. The

fit line is [∆ (1/δµ)]−1 = −0.9986µs + 0.0028 and indicates good agreement with the

theoretical explanation presented in text.

representing a transcedental equation in δµ where µ̂s and x̂f are fixed, nf is a large

positive integer (i.e., nf − 1 is the integer part of (µ̂f − µ̂s)/δµ), and K(ζ) is the

inverse function of Ai′(ξ)/Ai(ξ) in the neighborhood of ζ = (a2/δµ)1/3 x̂f � 1. Thus

|K[(a2/δµ)1/3 x̂f ]| � |K(∞)| = |ξ̃|. The difference [1/δµ(xf , nf+1)−1/δµ(xf , nf)],

where δµ(xf , nf) is the solution of Eq. (3.17), yields the limit period of the attracting

state versus 1/δµ graph (see Fig. 3.6). We denote this limit period by ∆ (1/δµ). For

small δµ, the term involving K[(a2/δµ)1/3 x̂f ] in Eq. (3.17) can be neglected, and

we get ∆ (1/δµ) = −µ̂−1
s = (−µs + µ∗)−1. Figure 3.7 graphs numerical results

of [∆ (1/δµ)]−1 versus µs for our map example given by Eq. (3.9). The fit line is

[∆ (1/δµ)]−1 = −0.9986µs + 0.0028, which agrees well with the prediction of the

above analysis and our numerical value for µ at the bifurcation, µ∗ ≈ 0.00279.

An alternate point of view on this scaling property is as follows. For µ̂ < 0

(i.e., µ < µ∗) and slow sweeping (i.e., δµ small), the orbit closely follows the sta-
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Figure 3.8: Graphs of f̂µ̂(x̂) at different values of the parameter µ̂. The black dots

indicate the stable fixed points of f̂µ̂ for different values of µ̂.

ble fixed point attractor of f̂µ̂, until µ̂ ≥ 0, and the saddle-node bifurcation takes

place. However, due to the discreteness of n, the first nonnegative value of µ̂ de-

pends on µ̂s and δµ (see Fig. 3.8). Now consider two values of δµ, one δµm satisfy-

ing µ̂s + m δµm = 0, and another δµm+1 satisfying µ̂s + (m + 1) δµm+1 = 0. Be-

cause δµm and δµm+1 are very close (for large m) and both lead µ̂(n) to pass through

µ̂ = µ̂∗ = 0 (one at time n = m, and the other at time n = m + 1), it is reasonable

to assume that their orbits for µ̂s/δµ < n < n′ are similar (except for a time shift

n → n + 1); i.e., they go to the same attractor. Thus, the period of 1/δµ is approxi-

mately ∆ (1/δµ) = 1/δµm+1 − 1/δµm = −µ̂−1
s .

We now consider the intervals of 1/δµ between the centers of consecutive wide

white bands in Fig. 3.6(b). Figure 3.9 graphs the calculated fractal dimension D ′ of

the boundary between white bands in these consecutive intervals versus their center
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Figure 3.9: The calculated fractal dimension D′ of the structure in the intervals be-

tween the centers of consecutive wide white bands in Fig. 3.6(b) versus their center

value of 1/δµ.

value of 1/δµ. From Fig. 3.9, we see that as 1/δµ increases, the graph of the fractal

dimension D′ does not converge to a definite value, but displays further structure. Nev-

ertheless, numerics show that as 1/δµ becomes large (i.e., in the range of 6.5 × 105),

D′ varies around the value 0.952. This is consistent with the numerics presented in

Fig. 3.4(b) which graphs the dimension of the fractal basin boundary for the time-

independent map fµ, at fixed values of the parameter µ where µ > µ∗. Thus, for large

1/δµ, D′ provides an estimate of the dimension of the fractal basin boundary in the

absence of sweeping at µ > µ∗.

We now discuss a possible experimental application of our analysis. The concep-

tually most straightforward method of measuring a fractal basin boundary would be to

repeat many experiments each with precisely chosen initial conditions. By determin-

ing the final attractor corresponding to each initial condition, basins of attraction could

conceivably be mapped out [21]. However, it is commonly the case that accurate con-

47



trol of initial conditions is not feasible for experiments. Thus, the application of this

direct method is limited, and, as a consequence, fractal basin boundaries have received

little experimental study, in spite of their fundamental importance. If a saddle-node bi-

furcation occurs on the fractal basin boundary, an experiment can be arranged to take

advantage of this. In this case, the purpose of the experiment would be to measure the

dimension D′ as an estimate of the fractal dimension of the basin boundary D. The

measurements would determine the final attractor of orbits starting at the attractor to

be destroyed by the saddle-node bifurcation, and swept through the saddle-node bifur-

cation at different velocities (i.e., the experimental data corresponding to the numerics

in Fig. 3.6). This does not require precise control of the initial conditions of the orbits.

It is sufficient for the initial condition to be in the basin of the attractor to be destroyed

by the saddle-node bifurcation; after enough time, the orbit will be as close to the

attractor as the noise level allows. Then, the orbit may be swept through the saddle-

node bifurcation. The final states of the orbits are attractors; in their final states, orbits

are robust to noise and to measurement perturbations. The only parameters which re-

quire rigorous control are the sweeping velocity (i.e., δµ) and the initial value of the

parameter to be swept (i.e., µs); precise knowledge of the parameter value where the

saddle-node bifurcation takes place (i.e., µ∗) is not needed. [It is also required that the

noise level be sufficiently low (see Sec. 3.2.6).]

3.2.5 Capture Time

A question of interest is how much time it takes for a swept orbit to reach the final

attracting state. Namely, we ask how many iterations with µ > µ∗ are needed for the

orbit to reach a neighborhood of the attractor having the green basin. Due to slow

sweeping, the location of the attractor changes slightly on every iterate. If xµ is a fixed
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Figure 3.10: Capture time by the fixed point attractor Gµf
versus 1/δµ. We have

chosen µs = 0. The range of 1/δµ is approximatelly one period of the graph in

Fig. 3.6(b), with δµ ≈ 10−8. The vertical axis ranges between 250 and 650. No points

are plotted for values of δµ for which the orbit reaches the fixed point attractor Rµf
.

point attractor of fµ (with µ constant), then a small change δµ in the parameter µ,

yields a change in the position of the fixed point attractor,

(xµ+δµ − xµ) ≡ δx = δµ

∂f
∂µ

(xµ; µ)

1 − ∂fµ

∂x
(xµ)

.

We consider the swept orbit to have reached its final attractor if consecutive iterates

differ by about δx (which is proportional to δµ). For numerical purposes, we consider

that the orbit has reached its final state if |xn+1 − xn| < 10 δµ. In our numerical ex-

periments, this condition is satisfied by every orbit before µ reaches its final value µf .

We refer to the number of iterations with µ > µ∗ needed to reach the final state as

the capture time of the corresponding orbit. Figure 3.10 plots the capture time by the

attractor Gµf
[having the green basin in Fig. 3.2] versus 1/δµ for a range correspond-

ing to one period of the structure in Fig. 3.6(b). No points are plotted for values of
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Figure 3.11: Capture time by the middle fixed point attractor of fµ versus δµ (µs = 0).

The best fitting line (not shown) has slope -0.31, in agreement with the theory.

δµ for which the orbit reaches the attractor Rµf
. The capture time graph has fractal

features, since for many values of δµ the orbit gets close to the fractal boundary be-

tween R[µ] and G[µ]. Using the fact that the final destination of the orbit versus 1/δµ

is asymptotically periodic [see Fig. 3.6(b)], we can provide a further description of the

capture time graph. We consider the series of the largest intervals of 1/δµ for which

the orbit reaches the attractor Gµf
[see Fig. 3.6(b); we refer to the wide white band

around 1/δµ = 2400 and the similar ones which are (asymptotically) separated by an

integer number of periods]. Orbits swept with δµ at the centers of these intervals spend

only a small number of iterations close to the common fractal boundary of R[µ] and

G[µ]. Thus, the capture time of such similar orbits does not depend on the structure of

the fractal basin boundary. We use Eq. (3.15) as an approximate description of these

orbits. A swept orbit reaches its final attracting state as x̂(n) becomes large. Then,

the orbit is rapidly trapped in the neighborhood of one of the swept attractors of fµ.

Thus, we equate the argument of the Airy function in the denominator to its first root

50



[see (3.15)], solve for n, and substract −µ̂s/δµ (the time for µ̂ to reach the bifurcation

value). This yields the following approximate formula for the capture time

nC ≈ |ξ̃|(a δµ)−1/3, (3.18)

where ξ̃ = −2.3381... is the largest root of the Airy function Ai. Thus, we predict

that for small δµ, a log-log plot of the capture time of the selected orbits versus δµ is

a straight line with slope -1/3. Figure 3.11 shows the corresponding numerical results.

The best fitting line (not shown) has slope -0.31, in agreement with our prediction [38].

3.2.6 Sweeping Through an Indeterminate Saddle-Node Bifurca-

tion in the Presence of Noise

We now consider the addition of noise. Thus, we change our swept dynamical system

to

xn+1 = fµn(xn) + A εn, (3.19)

µn = µs + n δµ,

where εn is random with uniform probability density in the interval [−1, 1], and A

is a parameter which we call the noise amplitude. See Fig. 3.6(a) which shows the

numerical results of the final destination of the orbits versus δµ in the case A = 0. The

graph exhibits fractal features of structure at arbitrarily small scales. The addition of

small noise is expected to alter this structure, switching the final destination of orbits.

In this case, it is appropriate to study the probability of orbits reaching one of the

final destinations. For every A, we compute the final attractor of a large number of

orbits having identical initial condition and parameters, but with different realizations

of the noise. We estimate the probability that an orbit reaches a certain attractor by
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Figure 3.12: Probability that one orbit reaches the middle fixed point attractor of fµ

versus the noise amplitude A, for five different values of δµ (10−5, 10−5 ± 2.5 × 10−8

and 10−5 ± 5 × 10−8). We have chosen µs = 0.

the fraction of such orbits that have reached the specified attractor in our numerical

simulation. Figure 3.12 graphs the probability that an orbit reaches the attractor Gµf

versus the noise amplitude A. We present five graphs corresponding to five different

values of δµ equally spaced in a range of 10−7 centered at 10−5 (i.e., δµ = 10−5,

10−5 ± 2.5 × 10−8 and 10−5 ± 5 × 10−8 ). We notice that the probability graphs have

different shapes, but a common horizontal asymptote in the limit of large noise. The

value of the horizontal asymptote, approximately equal to 0.5, is related to the relative

measure of the corresponding basin.

As in the previous subsection, we take advantage of the asymptotically periodic

structure of the noiseless final destination graph versus 1/δµ [see Fig. 3.6(b)]. We

consider centers of the largest intervals of 1/δµ for which an orbit reaches the middle

attractor in the absence of noise. We chose five such values of δµ, spread over two

decades, where the ratio of consecutive values is approximately 3. Figure 3.13(a)

52



1 2 3 4 5

x 10
−5

0.5

0.6

0.7

0.8

0.9

1

noise amplitude A

pr
ob

ab
ili

ty

0.1 0.2 0.3

0.6

0.7

0.8

0.9

1

A/δµ5/6

pr
ob

ab
ili

ty

(a) (b)

Figure 3.13: Probability that an orbit reaches the middle fixed point attractor of fµ, for

five selected values of δµ spread over two decades: (a) versus the noise amplitude A,

and (b) versus A/(δµ)5/6, We have chosen µs = 0.

graphs the probability that an orbit reaches the middle fixed point attractor versus the

noise amplitude A, for the five selected values of δµ. From right to left, the δµ values

corresponding to the curves are approximately: 3.445974 × 10−5, 1.147767 × 10−5,

3.820744× 10−6, 1.273160× 10−6 and 4.243522× 10−7. We notice that all the curves

have qualitatively similar shape. For a range from zero to small A, the probability is 1,

and as A increases, the probability decreases to a horizontal asymptote. The rightmost

curve in the family corresponds to the largest value of δµ (δµ ≈ 3.445974 × 10−5),

and the leftmost curve corresponds to the smallest value of δµ (δµ ≈ 4.243522 ×
10−7). Figure 3.13(b) shows the same family of curves as in Fig. 3.13(a), but with

the horizontal scale changed from A to A/(δµ)5/6. All data collapse to a single curve,

indicating that the probability that a swept orbit reaches the attractor Gµf
depends only

on the reduced variable A/(δµ)5/6. Later, we provide a theoretical argument for this

scaling.

In order to gain some understanding of this result, we follow the idea of Sec. 3.2.4,
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Figure 3.14: Probability that an orbit of f̂µ̂ reaches a fixed interval far from the saddle-

node bifurcation (i.e., [100, 250]), for five values of δµ spread over two decades: (a)

versus the noise amplitude A, and (b) versus A/(δµ)5/6. We have chosen µs = 0.

and use the canonical form f̂µ̂ to propose a simplified setup of our problem. We modify

(3.10) by the addition of a noise term A εn in the right hand side of the first equation

of (3.10). We are interested in the probability that a swept orbit has at least one iterate,

x̂n, in a specified fixed interval far from the vicinity of the saddle-node bifurcation.

More precisely, we analyze how this probability changes versus A and δµ. Depending

on the choice of interval and the choice of δµ, the probability versus A graph (not

shown) has various shapes. For numerical purposes, we choose our fixed interval to

be the same as that of Sec. 3.2.4, 100 ≤ x̂ ≤ 250. We then select values of δµ for

which a noiseless swept orbit, starting at x̂s = −√−µ̂s/a, reaches exactly the center

of our fixed interval. The inverse of these values of δµ are centers of intervals where

the final state of the swept orbits is 0 [see Fig. 3.6(c)]. We consider five such values

of δµ, where the ratio of consecutive values is approximately 3. Figure 3.14(a) shows

the probability that a swept orbit has an iterate in our fixed interval versus the noise

amplitude for the selected values of δµ. From right to left, the δµ values corresponding
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to the curves are approximately: 3.451540×10−5, 1.149162×10−5, 3.829769×10−6,

1.276061×10−6 and 4.253018×10−7. Figure 3.14(a) shares the qualitative character-

istics of Fig. 3.13(a), with the only noticeable difference that the value of the horizontal

asymptote is now approximately 0.1. Figure 3.14(b) shows the same family of curves

as in Fig. 3.14(a), where the horizontal scale has been changed from A to A/(δµ)5/6.

As for Fig. 3.12(b), this achieves good collapse of the family of curves.

We now present a theoretical argument for why the probability of reaching an at-

tractor depends on δµ and A only through the scaled variable A/(δµ)5/6 when δµ and

A are small. From our results in Figs. 3.14, we know that the scaling we wish to

demonstrate should be obtainable by use of the canonical form f̂µ̂. Accordingly, we

again use the differential equation approximation (3.11), but with a noise term added,

dx̂

dn
= n δµ + ax̂2 + Aε̂(n), (3.20)

where ε̂(n) is white noise,

〈ε̂(n)〉 = 0, 〈ε̂(n + n′)ε̂(n)〉 = δ(n′),

and we have redefined the origin of the time variable n so that the parameter µ̂ sweeps

through zero at n = 0 (i.e., we replaced n by n − |µ̂s|/δµ). Because we are only

concerned with scaling, and not with the exact solution of (3.20), a fairly crude analysis

will be sufficient.

First we consider the solution of (3.20) with the noise term omitted, and the initial

condition [see (3.16)]

x̂(0) = (−0.7290...)
(
δµ/a2

)1/3
.

We define a characteristic point of the orbit, x̂nl(nnl), where ax̂2
nl ≈ nnl δµ. For n <
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nnl, n δµ ≤ dx̂/dn < 2n δµ, and we can approximate the noiseless orbit as

x̂(n) ≈ x̂(0) + α(n)(n2 δµ), (3.21)

where α(n) is a slowly varying function of n of order 1 (1/2 ≤ α(n) < 1 for n < nnl).

Setting ax̂2 ≈ n δµ, we find that nnl is given by

nnl ∼ (a δµ)−1/3, (3.22)

corresponding to [c.f., Eq. (3.21)]

x̂nl ∼ (δµ/a)1/3.

For n > nnl (i.e., x̂(n) > x̂nl), Eq. (3.20) can be approximated as dx̂/dn ≈ ax̂2.

Starting at x̂(n) ∼ x̂nl, integration of this equation leads to explosive growth of x̂ to

infinity in a time of order (a δµ)−1/3, which is of the same order as nnl. Thus, the

relevant time scale is (a δµ)−1/3 [this agrees with Eq. (3.18) in Sec. 3.2.5].

Now consider the action of noise. For n < nnl, we neglect the nonlinear term

ax̂2, so that (3.20) becomes dx̂/dn = n δµ + Aε̂(n). The solution of this equation

is the linear superposition of the solutions of dx̂a/dn = n δµ and dx̂b/dn = Aε̂(n),

or x̂(n) = x̂a(n) + x̂b(n); x̂a(n) is given by x̂a(n) = x̂(0) + n2δµ/2, and x̂b(n) is a

random walk. Thus, for n < nnl, there is diffusive spreading of the probability density

of x̂,

∆diff(n) ≡
√

〈x̂2
b(n)〉 ∼ n1/2A. (3.23)

This diffusive spreading can blur out the structure in Fig. 3.6. How large does the

noise amplitude A have to be to do this? We can estimate A by noting that the periodic

structure in Figs. 3.6(b,c) results from orbits that take different integer times to reach
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x̂ ∼ x̂nl. Thus, for n ≈ nnl we define a scale ∆nl in x̂ corresponding to the periodicity

in 1/δµ by [c.f., Eq. (3.21)]

x̂nl ± ∆nl ≈ x̂(0) + (nnl ± 1)2δµ

which yields

∆nl ∼ nnlδµ. (3.24)

If by the time n ≈ nnl, the diffusive spread of the probability density of x̂ becomes as

large as ∆nl, then the noise starts to wash out the periodic variations with 1/δµ. Setting

∆diff(nnl) from (3.23) to be of the order of ∆nl from (3.24), we obtain n
1/2
nl A ∼ nnlδµ,

which with (3.22) yields

A ∼ (δµ)5/6. (3.25)

Thus, we expect a collapse of the two parameter (A, δµ) data in Fig. 3.14(a) by means

of a rescaling of A by δµ raised to an exponent 5/6 [i.e., A/(δµ)5/6].

3.3 Scaling of Indeterminate Saddle-Node Bifurcations

for a Periodically Forced Second Order Ordinary

Differential Equation

In this section we demonstrate the scaling properties of sweeping through an indeter-

minate saddle-node bifurcation in the case of the periodically forced Duffing oscillator

[30],

ẍ − 0.15 ẋ− x + x3 = µ cos t. (3.26)
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Figure 3.15: Final attracting state of swept orbits of the Duffing oscilator versus 1/δµ.

The structure of white and black bands becomes asymptotically periodic. We have

chosen µs = 0.253, and µf = 0.22. The attractor in the potential well for x > 0 is

represented as a 1, and the attractor in the potential well for x < 0 is represented as a

0.

The unforced Duffing system (i.e., µ = 0) is an example of an oscillator in a double

well potential. It has two coexisting fixed point attractors corresponding to the two

minima of the potential energy. For small µ, the forced Duffing oscillator has two

attracting periodic orbits with the period of the forcing (i.e., 2π), one in each well of

the potential. At µ = µ∗ ≈ 0.2446, a new attracting periodic orbit of period 6π arises

through a saddle-node bifurcation. In Ref. [39], it is argued numerically that for a

certain range of µ > µ∗ the basin of attraction of the 6π periodic orbit and the basins

of attraction of the 2π periodic orbits have the Wada property. Thus, as µ decreases

through the critical value µ∗, the period 6π attractor is destroyed via a saddle-node

bifurcation on the fractal boundary of the basins of the other two attractors. This is

an example of an indeterminate saddle-node bifurcation of the Duffing system which

we study by considering the two-dimensional map in the (ẋ, x) plane resulting from a

Poincaré section at constant phase of the forcing signal. We consider orbits starting in

the vicinity of the period three fixed point attractor, and, as we integrate the Duffing

system, we decrease µ from µs > µ∗ to µf < µ∗ at a small rate of δµ per one pe-
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Figure 3.16: Probability the Duffing oscillator reaches the attracting periodic orbit in

the potential well at x > 0 for three values of δµ spread over one decades: (a) versus

the noise amplitude A, and (b) versus A/(δµ)5/6. We have chosen µs = 0.253.

riod of the forcing signal. As µ approaches µ∗, (with µ > µ∗,) the period three fixed

point attractor of the unswept Duffing system approaches its basin boundary, and the

slowly swept orbit closely follows its location. For µ − µ∗ < 0 small, the orbit will

approximately follow the one-dimensional unstable manifold of the µ = µ∗ period

three saddle-node pair. Thus, we can describe the sweeping through the indeterminate

bifurcation of the Duffing oscillator by the theory we developed for one dimensional

discrete maps. Figure 3.15 shows the final destination graph of a swept orbit initially

situated in the vicinity of the period three fixed point of the Poincaré map. The final

attracting state is represented as a 1 if situated in the potential well where x > 0, and is

represented as a 0 if situated in the potential well where x < 0. As expected, the struc-

ture in Fig. 3.15 appears asymptotically periodic if graphed versus 1/δµ. In addition

to slowly sweeping the Duffing system, consider an additive noise term A ε(t) in the

right hand side of (3.26), where on every time step ε(t) is chosen randomly in [−1, 1],

and the time step used is ∆t = 2π/500. Figure 3.16(a) shows the dependence of the
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probability of approaching the attractor represented as a 1 versus the noise amplitude

A for three specially selected values of δµ (centers of white bands in the structure of

Fig. 3.15 where the swept orbit reaches the attracting state represented by 1) spread

over one decade. From right to left, the δµ values corresponding to the curves are ap-

proximately: 4.628716×10−5, 1.461574×10−5 and 4.621737×10−6. Figure 3.16(b)

shows collapse of the data in Fig. 3.16(a) to a single curve when the noise ampli-

tude A is rescaled by (δµ)5/6, as predicted by our previous one-dimensional analysis

(Sec. 3.2.6). Thus, we believe that the scaling properties of the indeterminate saddle-

node bifurcation we found in one-dimensional discrete maps are also shared by higher

dimensional flows.

3.4 Indeterminacy in How an Attractor is Approached

In this section we consider the case of a one dimensional map fµ having two attractors

A and B, one of which (i.e., A) exists for all µ ∈ [µs, µf ]. The other (i.e., B) is a node

which is destroyed by a saddle-node bifurcation on the boundary between the basins

of A and B, as µ increases through µ∗ (µ∗ ∈ [µs, µf ]). When an orbit is initially on B,

and µ is slowly increased through µ∗, the orbit will always go to A (which is the only

attractor for µ > µ∗). However, it is possible to distinguish between two (or more)

different ways of approaching A. [In particular, we are interested in ways of approach

that can be distinguished in a coordinate-free (i.e., invariant) manner.] As we show in

this section, the way in which A is approached can be indeterminate. In this case, the

indeterminacy is connected with the existence of an invariant nonattracting Cantor set

embedded in the basin of A for µ > µ∗.
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Figure 3.17: (a) Graph of fµ(x) versus x at the bifurcation parameter. (b) Basin struc-

ture of map fµ(x) versus the parameter µ (−0.3 ≤ µ ≤ 0.3 and −2 ≤ x ≤ 2). The

basin of attraction of the stable fixed point created by the saddle-node bifurcation is

black while the basin of attraction of minus infinity is left white.

As an illustration, we construct the following model

fµ(x) = −µ + x − 3x2 − x4 + 3.6x6 − x8. (3.27)

Calculations show that fµ satisfies all the requirements of the saddle-node bifurcation

theorem for undergoing a backward saddle-node bifurcation at x∗ = 0 and µ∗ = 0.

Figure 3.17(a) shows the graph of fµ versus x at µ = µ∗. Figure 3.17(b) shows how

the basin structure of the map fµ varies with the parameter µ. For positive values

of µ, fµ has only one attractor which is at minus infinity. The basin of this attractor

is the whole real axis. As µ decreases through µ∗ = 0, a new fixed point attractor

is created at x∗ = 0. The basin of attraction of this fixed point has infinitely many

disjoint intervals displaying fractal features [indicated in black in Fig. 3.17(b)]. This

is similar to the blue basin B[µ] of the attractor Bµ of the previous one-dimensional
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Figure 3.18: (a) Basin structure of fµ versus µ (−0.3 ≤ µ ≤ 0.3 and −2 ≤ x ≤ 2).

We split the basin of attraction of minus infinity into two components, one plotted

as the green region and the other plotted as the red region. The green region is the

collection of all points that go to minus infinity and have at least one iterate bigger that

the unstable fixed point qµ. The red set is the region of all the other points that go to

minus infinity. (b) Detail of Fig. 3.15(a) in the region shown as the white rectangle,

−0.005 ≤ µ ≤ 0.015 and −0.09 ≤ x ≤ 0.41.

model (see Sec. 3.2.1).

The blue region in Fig. 3.18(a) is the basin of attraction of the stable fixed point

destroyed as µ increases through µ∗. For every value of µ we consider, the map fµ

has invariant Cantor sets. The trajectories of points which are located on an invariant

Cantor set, do not diverge to infinity. One way to display such Cantor sets, is to

select uniquely defined intervals whose end points are on the Cantor set. For example,

Fig. 3.18(a) shows green and red regions. For every fixed parameter value µ, the

collection of points that are boundary points of the red and green regions, constitutes
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Figure 3.19: The chaotic saddle of fµ versus µ (−0.3 ≤ µ ≤ 0.3 and −2 ≤ x ≤ 2)

generated by the PIM-triple method.

an invariant Cantor set. In order to describe these green and red regions, we introduce

the following notations. For each parameter value µ, let pµ be the leftmost fixed point

of fµ [see Fig. 3.17(a)]. For every x0 < pµ, the sequence of iterates {xn = f
[n]
µ (x0)} is

decreasing and diverges to minus infinity. For each value of µ, let qµ be the fixed point

of fµ to the right of x = 0 at which ∂fµ

∂x
(qµ) > 1. A point (x; µ) is colored green if its

trajectory diverges to minus infinity and it passes through the interval (qµ,∞), and it is

colored red if its trajectory diverges to minus infinity and it does not pass through the

interval (qµ,∞). Denote the collection of points (x; µ) that are colored green by G[µ],

and the collection of points (x; µ) that are colored red by R[µ]. Using the methods

and techniques of [40], it can be shown that the collection of points (x; µ) which are

common boundary points of G[µ] and R[µ] is a Cantor set C[µ] [41]. In particular, the

results of [40] imply that for µ = µ∗ = 0 the point x∗ = 0 belongs to the invariant

Cantor set C[µ∗].

Figure 3.18(b) is a zoom of Fig. 3.18(a) in the region of the saddle-node bifurca-
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Figure 3.20: The chaotic saddle of the map fµ in the vicinity of the saddle-node bi-

furcation with the horizontal axis rescaled from µ to: (a) (µ∗ − µ)−1/2. Notice that

the chaotic saddle becomes asymptotically periodic (−0.008 ≤ x ≤ 0.337, 10 ≤
(µ∗ − µ)−1/2 ≤ 15). (b) (µ∗∗ − µ)−1/2, where µ∗∗ = 0.23495384. We believe that

µ∗∗ corresponds to the approximate value of the parameter µ where a saddle-node bi-

furcation of a periodic orbit of fµ takes place on the Cantor set C[µ]. In this case, the

chaotic saddle also becomes asymptotically periodic (−0.162 ≤ x ≤ 0.168, 9.97 <

(µ∗∗ − µ)−1/2 < 2010).
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tion. For values of µ > µ∗, in the vicinity of (x∗; µ∗), one notices a fractal alternation

of red and green stripes. The green and red stripe structure in Fig. 3.18(b) shares qual-

itative properties with the structure in Fig. 3.2(b). All the analysis in Sec. 3.2 can be

adapted straightfowardly to fit this situation.

Figure 3.19 shows how the chaotic saddle of the map fµ varies with µ. The chaotic

saddle is generated numerically using the PIM-triple method. For an explanation of

this method see Nusse and Yorke [42]. Using arguments similar to those in Sec. 3.2.3,

we predict that changing the horizontal axis of Fig. 3.19 from µ to (µ−µ∗)−1/2 makes

the chaotic saddle asymptotically periodic. Numerical results confirming this are pre-

sented in Fig. 3.20(a). For fµ given by (3.27), we were able to find a parameter

value µ∗∗ = 0.23495384 where changing the horizontal axis of Fig. 3.19 from µ to

(µ − µ∗∗)−1/2 [see Fig. 3.20(b)] apparently makes the chaotic saddle asymptotically

periodic [with a different period than that of Fig. 3.20(a)]. As in the case discussed

in Sec. 3.2, past the saddle-node bifurcation of fµ at µ∗, infinitely many other saddle-

node bifurcations of periodic orbits take place on the invariant Cantor set C[µ]. We

believe that µ∗∗ is an approximate value of µ where such a saddle-node of a periodic

orbit takes place.

3.5 Discussion and Conclusions

In this chapter, we have investigated scaling properties of saddle-node bifurcations that

occur on fractal basin boundaries. Such situations are known to be indeterminate in

the sense that it is difficult to predict the eventual fate of an orbit that tracks the pre-

bifurcation node attractor as the system parameter is swept through the bifurcation.

We have first analyzed the case of one-dimensional discrete maps. Using the normal
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form of the saddle-node bifurcation and general properties of fractal basin boundaries,

we established the following universal (i.e., model independent) scaling results

• scaling of the fractal basin boundary of the static (i.e., unswept) system near the

saddle-node bifurcation,

• the scaling dependence of the orbit’s final destination with the inverse of the

sweeping rate,

• the dependence of the time it takes for an attractor to capture a swept orbit with

the -1/3 power of the sweeping rate,

• scaling of the effect of noise on the final attractor capture probability with the

5/6 power of the sweeping rate.

All these results were demonstrated numerically for a one-dimensional map example.

Following our one-dimensional investigations, we have explained and demonstrated

numerically that these new results also apply to two-dimensional maps. Our numerical

example was a two-dimensional map that results from a Poincaré section of the forced

Duffing oscillator. In the last section of this chapter, we have discussed how the new

results listed above apply to the case where a saddle-node bifurcation occurs on an

invariant Cantor set which is embedded in a basin of attraction, and we have supported

our discussion by numerics.
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