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PASOTRONSs (Plasma Assisted Slow wave Oscillator) are new high power
Cherenkov sources, working without the heavy magnetic field solenoids. Instead
of the strong magnetic field, electron transportation in these devices is provided
by plasma ions, which compensate the self space charge forces of the beam.
The absence of strong guiding magnetic field, gives the electrons the freedom to
move transversely by the RF fields besides the usual axial motion in these type
of devices. The transverse motion greatly alter the operation of the Cherenkov

device. The field intensity of the synchronous space harmonic is concentrated



around the SWS. So, transverse motion can be beneficial in electron wave inter-
action, as electrons experience this strong field as they move transversely towards
the SWS. This stimulated interests in theoretical analysis of these devices.

For symmetrical slow wave structures (SWS), i.e. corrugated waveguide,
employed in traveling wave tubes (TWT) and backward wave oscillator (BWO),
filled with plasma, it is shown in this study that the operation of these devices
can be enhanced by adding a small magnetic field. The small magnetic field
helps avoid interception, while maintaining the preferable transverse motion.

A 3D “amplifier” model describing the steady state operation of the helix
PASOTRON BWO is presented. The results showed that electrons injected
inside the helix are those that contribute most to the device efficiency over those
electrons injected outside the helix. It is also shown that by reducing the beam
size, high efficiencies up to 55% can be achieved. Such high efficiency, which
is unachievable in conventional BWOs driven by linear electron beams, can be
explained by a favorable effect of the transverse motion of electrons.

Temporal study of the helix PASOTRON BWO is also presented. It is shown
that for zero reflection device, there was no automodulation oscillations. This
is attributed to the 3D electron motion together with the 90° phase difference
between the radial and longitudinal field components of the synchronous har-
monic. For the non-zero reflection case, the reflection phase greatly affects the

device operation.
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Chapter 1

Introduction

1.1 Survey of Relativistic Backward-Wave Os-
cillators

Backward-wave oscillators (BWOs) are considered sources of coherent Cherenkov
radiation. The operation of the BWO is based on the interaction between an
electron beam and a synchronous space harmonic of an electromagnetic wave of
a slow-wave structure (SWS). While the phase velocity of this wave is close to
the electron velocity, the RF power flow is opposite to the streaming direction
of the electron beam. This is why the device is called backward wave oscillator.
The RF group velocity, which is the velocity of energy propagation, is opposite to
the phase velocity of the synchronous harmonic. A slow wave structure (SWS) is
employed to reduce the phase velocity of the EM wave, v,,, to the axial velocity
of the electrons, v, thus providing the condition for Cherenkov interaction. The
corrugated waveguide is the typical SWS used, although it could be a helix
type, depending on the desired operation frequency and power level. Figure

1.1 sketches the typical SWS employing an annular beam. The guiding of the



beam against its electrostatic forces is provided by a strong magnetic field. The
excitation of BWO oscillations was first demonstrated by Kompfner et al. [2]
using a ridged waveguide traveling wave amplifier, called a Millman tube [3]. The
tube used a low energy electron beam, and showed frequency tunability only by
changing the beam voltage. The first BWO employing a relativistic annular
beam was by Nation [4] in 1970. He used a cylindrically symmetric, annular,
ridged waveguide as a SWS. The output power level was about 10 MW with
0.05% efficiency. A higher efficiency higher power BWO was then developed with
efficiency 12-15% [5] and 17% [6], where the measured RF power level was 500
MW. About 1 GW emission was obtained with 25% efficiency in the centimeter
wavelength range [7]. Field emission breakdown is one of the limiting factor to
the output high power level in this device. To overcome that, overmoded SWS,
characterized by larger tube diameter compared to the operating wavelength,
were employed [8, 9, 10].

The limitation of the BWO efficiency occurs because of the longitudinal pro-
file of the RF field inside the tube. For matched output of the tube the field
profile is zero at the electron downstream end and maximum at the electron
entrance. This is disadvantageous to the beam, as the electron beam is bunched
by the strong field at the entrance and the RF energy is extracted with interac-
tion with the small field at the outlet. A modification to the tube and guiding
magnetic field was performed by El’Chaninov et al. [11] to maximize the device
efficiency by increasing the corrugation depth at the electron beam exit, hence
increasing the coupling impedance, and reducing the guiding magnetic field al-
lowing the electrons to be closer to the SWS wall where they experience larger

field.
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Figure 1.1: Schematic of a corrugated SWS loaded with annular electron beam.

Adding plasma inside the BWO modifies the properties of the RF radiation
and the beam transportation through the device. The EM wave dispersion curves
are frequency upshifted in the presence of plasma inside the SWS. This frequency
upshift was shown theoretically [12], and experimentally [13] for plasma-loaded
corrugated wall resonators. Plasma filled BWO sources have many advantages
[14] over the conventional vacuum BWO. The maximum electron current that
can propagate through the device is increased, due to charge neutralization by
the plasma ions. Increase in power and efficiency could also be achieved in the
presence of plasma [15, 16]. These increases are due to two reasons. First, the
presence of plasma can reduce space charge effects on the electron beam bunches,
since the plasma reduces the repulsive debunching forces between electrons by
neutralizing some fraction of the bunch space charge. The second reason is the

generation of hybrid modes, i.e. slow-wave plasma modes, [17, 18] with increased



on-axis field. Plasma filled BWOs can transport high current exceeding the max-
imum limiting current transported [19] in the vacuum BWO case. This increase
in current carrying capability, enhances the output power of these devices. Re-
duction in the required guiding magnetic field can also be achieved by adding
plasma [19].

In most BWOs, a strong axial magnetic field is applied to guide the electron
beam. Correspondingly, only one dimensional interaction is allowed between the
axially streaming electrons and the axial electric field of the wave. Applying

such a strong magnetic field requires heavy and bulky solenoids.

1.2 PASOTRON (Plasma Assisted Slow-wave
Oscillator)

Recently, new devices have been studied; they are called PASOTRONs (Plasma-
Assisted Slow-wave Oscillators) [20, 21, 22]. These devices usually operate with-
out guiding magnetic field. The beam transport is provided by the presence of
ions which compensate for the space charge forces and thus cause the ion fo-
cusing known as the Bennett pinch [23]. The SWS used in PASOTRON BWOs
can be either a rippled-wall waveguide (RWG) [20], or a helix [21]. Since helix
SWS is known for its wide frequency band operation, very often it is preferred in
applications. In recent experiments with the helix PASOTRON BWO [21], effi-
ciencies of up to 30% were obtained by providing RF reflection with the proper
phase at the downstream end of the electron beam. Schematic of the experiment
setup is shown in Fig. 1.2. The system utilizes a plasma cathode E-gun and

a helix SWS installed in an Ultra-High Vacuum (UHV) system. The electron



beam coming out of the plasma gun generates a plasma channel by ionizing a low
pressure gas, usually coming out from the electron gun. This plasma channel
provides compensation for the space-charge forces. The charge compensation
also causes beam focusing (pinching) directly after the gun region due to the
beam self magnetic field.

The absence of the strong guiding magnetic field in PASOTRON devices,
gives electrons the freedom to move not only axially but also transversely under
the action of the RF wave. For symmetrical SWS (e.g. RWG), the effect of this
transverse motion on the device operation was studied theoretically in Ref. [24],
and will be described in chapter 2. Later, it was shown by the present author
and his colleagues [25] that adding a small axial magnetic field in such devices
(less than 100 Gauss) could help to increase the efficiency from 20% to about
24% and could help prevent damage to the SWS. For a helix SWS PASOTRON,
the obtained efficiency can be even higher. It is shown in chapter 4 and in Ref.

[26], that efficiency up to 55% can be achieved.

1.3 Motivation and Dissertation Outline

Helix PASOTRON BWO is an active research topic in the area of High Power
Microwave (HPM) sources. The absence of the heavy and bulky solenoid makes
the device suitable for many applications. Also the device efficiency is higher
than its peer devices of the O-type category which employ steady axial magnetic
field to maintain the electrons against their repulsive space charge forces. Due
to the absence of a strong guiding magnetic field in the PASOTRON, the beam

electrons can experience transverse motion in addition to their usual axial mo-
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Figure 1.2: Schematic of the helix PASOTRON setup

tion. This transverse motion may cause interception of the beam by the outer
tube. Experimental results for helix PASOTRON [27] indicate that the beam
current was intercepted at about one third of the SWS length, which enabled a
decrease in the device length making it more compact.

From all these considerations, it became clear that it was important to de-
velop a 3-D theoretical model for the operation of the helix PASOTRON BWO.
The previous models were one dimensional models, which only describe the axial
electron motion. This newly developed theoretical model aims at achieving two
goals. First, it should describe the operation of the device explaining its high
efficiency compared with previous 1D devices. The other goal is to provide a tool
for further optimization of the device performance, i.e. efficiency and temporal
behavior.

The dissertation is organized as follows: In chapter 2, the effect of weak

magnetic field on the operation of corrugated TWT and BWO tubes is studied,



showing the merit of electron transverse motion. In chapter 3, the properties of
the cold helix structure used in the PASOTRON are discussed. In chapter 4, an
“amplifier” model for the device is used to predict the device electronic efficiency.
A time dependent model of the helix PASOTRON is presented in chapter 5 to
study the effect of helix end boundary reflections on the axial mode excitation.

Finally, chapter 6 summarizes contributions made in the dissertation.



Chapter 2

Traveling-Wave Tubes and
Backward-Wave Oscillators with Weak

External Magnetic Field

In this chapter, the operation of the corrugated waveguide PASOTRON in the
presence of weak external magnetic field is studied. The beam current is assumed
to be annular, with its electrons free to move transversely. In principle, in the
absence of guiding magnetic fields, due to the space charge forces and the radial
electric field of the wave, the electrons may propagate radially outward which
increases electron coupling to the slow wave whose field is localized near the
slow-wave structure (SWS). This increases the wave growth rate, and efficiency,
and hence, allows one to shorten the interaction region. So the radial electron
motion can be beneficial for operation if it does not lead to interception of
electrons by the SWS. To avoid this interception a weak external magnetic field
can be applied. The theory developed describes the effect of weak magnetic fields
on the operation of traveling-wave tubes (TWT) and backward-wave oscillators

(BWO) with electrons moving not only axially but also transversely. This theory



allows one to estimate the magnetic field required for protecting the SWS from

electron bombardment at different power levels.

2.1 Introduction

Both, traveling wave tubes and backward-wave oscillators can be considered
as sources of coherent Cherenkov radiation. The operation of these devices is
based on the synchronous interaction between an electron beam and an EM
wave. A slow wave structure is employed to reduce the phase velocity of the
EM wave, v,;, to the axial velocity of the electrons, v,, thus providing the
condition for Cherenkov interaction. In most of these devices a strong axial
magnetic field is applied to guide the electron beam. Correspondingly, only
one dimensional interaction is allowed between the axially streaming electrons
and the axial electric field of the wave. Applying such a strong magnetic field
requires heavy and bulky solenoids. Recently new devices called PASOTRONSs
(Plasma- Assisted Slow-wave Oscillators) [20, 21] have been developed. These
devices usually operate without guiding magnetic field. The beam transport is
provided by the presence of ions which compensate for the space charge forces
and thus cause the ion focusing known as the Bennett pinch [23].

Even in the case of complete compensation of electron space charge fields,
the absence of strong external magnetic field allows electrons to move radially
under the action of the radial electric field of the wave. This can be the reason
for two effects: a) radial motion outwards increases the coupling impedance,
b) transverse interaction increases the growth rate. The linear theory of this

interaction was considered in Ref. [28]. In the large-signal regime, however,



this transverse degree of freedom may cause electrons’ interception by the SWS.
It was shown both in theory [24] and experiments [20, 21] that at large wave
intensities, a significant fraction of the electrons can be intercepted by the SWS,
which may cause its damage. It seems possible to avoid this interception and,
at the same time, to benefit from electron transverse motion by using a weak
external magnetic field.

This theoretical study applies the model presented in [24] with the addition of
a weak magnetic field. We will show that this magnetic field provides some tuning
of the device, and enables the achievement of higher power without electron
interception. This tuning can be accomplished by varying the magnetic field
strength simultaneously with other parameters of the device in an attempt to
attain higher power using an interception-free length of the SWS. It will be
shown that a weak axial magnetic field can enhance the efficiency of both the
TWT and the BWO.

The chapter is organized as follows. In section 2.2, the formulation of the
problem is presented, where the equations describing the electron dynamic and
wave evolution are derived. A simplified model is also presented. The dispersion
relation for the TW'T in the presence of a uniform axial magnetic field is pre-
sented in section 2.3. The results of the nonlinear theory for TWT and BWO
are presented in section 2.4, where subsections 2.4.1 and 2.4.2 are for TWT and

BWO, respectively. The final conclusion is presented in section 2.5.
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2.2 Formulation

For symmetric periodic structures, the non-zero components of the symmetric

transverse magnetic mode, T'M,, in accordance with the Floquet theorem are

—iw In tkznz
E.=R ST L 1o(gar)en b
e{e 2 a W o(gnr)e }

E, = Re {e‘“"t Z ia,——1I (gnr)elk“‘z} , (2.1)

~ w/c

By = Re {e_i“’t Z ianll(gnr)eikmz} i

n
Here k., = k.o + 27n/d is the axial wavenumber of the n'* space harmonic (d is
the structure period), and g,, = \/W is the transverse wavenumber of
a slow wave.

The equations of motion for a charge ¢ moving in the electromagnetic field
of a TM-mode and a DC axial magnetic field Bye, can be written in cylindrical

coordinates as,

dp, - 0 :
CZ —ymr® = q (ET + %Bo — fy}:ncBa> . (2.2a)
ld 29y 4.
dp, ",
CZ —q (E n 71:7@039) , (2.2¢)
1 .
= \/1 + " (p% + v2m?2r26? +p§), (2.2d)

where p, and p, are the momentum in the radial and axial directions, respec-
tively. From Eq.(2.2b), we can get a constant of motion (the azimuthal canonical

momentum FPy), which is

. q ’]"2
Py = ymr*0 + _58'2(2) = const.
c

11



If we assume that at the entrance the electron beam is annular and thin with an
initial radius 7o, and all initial electrons velocities are axial (§y = 0), then the
constant of motion is ¢grg By/2¢, where 1 is the electron radial position at the

entrance. So the equation for 6 becomes,

O — qBy
2ymr2c

(12— 1)

With this equation we can eliminate 6 from Eqs.(2.2). We will also take the
independent variable z instead of ¢ , and introduce the slowly variable phase
Y =k, syncnz — wt, where k, gyncn is the axial wavenumber corresponding to the
synchronous space harmonic of the wave field in the expansion Egs.(2.1). For
simplicity we normalize the coordinates z and r by w/c, and the momenta p,, p,
by 1/me. Also, in the equations of motion (2.2), we keep only the synchronous

harmonic in the field expansion (2.1), since we assume that the rest of the har-

monics are asynchronous with the electron beam. So Eqs.(2.2) become,

dp, e ¥ . ;

i 0? (;927“3 + (hp_z — 1) Li(kr)Im {Ae™}, (2.3a)
d A ) N )

P= _ lmlo(/w)Re {Ae"} + &Il(m)lm {Ae}, (2.3b)
dz P b

dr _ p, dy YooY

U A N 2.3
dz D 7 dz - P20 2 / ( C)

= 14 P2+ Q2 (13 = 12 (2))* 1 + P2 (2.3d)

We have added the two Eqs.(2.3¢) to complete the system of equations. In
these equations A is the detuning factor A = 1/8,, — 1/8.0, where §,, and
(.o are, respectively, the wave phase velocity of the synchronous harmonic and
the initial electron axial velocity normalized to the speed of light. In Eqs.(2.3),
we introduced the normalized non-relativistic Larmor frequency Q) = w;/w =

eBy/(2cmw), and the normalized field amplitude A = ealy(grg)/(mwe), where
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g is the transverse wavenumber corresponding to the synchronous harmonic

ks synch (9 = \/ kisymh — w?/c?). Here the modified Bessel function Io(grg) de-
scribes the coupling of the axial electric field of the wave to electrons initially
located at rg, which corresponds to consideration of an initially thin annular
electron beam. Also we normalized the modified Bessel functions to Iy(gro):
Io(gr) = Io(gr)/Io(gro), Li(gr) = Ii(gr)/Io(gr,). In Eqs.(2.3a) and (2.3b)
h = kesynen] (/). and & = g/ (w]c).

As known, the equation describing the wave excitation can be obtained from
Maxwell equations. In the stationary regime, after some manipulations and
considering only the synchronous harmonic, this yields the equation for the time
independent wave amplitude, which for the TWT has the following form [24],
see also Appendix A,

klo(Kr) + i&hfl(m") e V. (2.4)

z

il
0z 27 Jor

0A 1 {

In Eq.(2.4), we introduced I = e2I,12(gry)/ (mw?|N|), where the norm of the
wave N is proportional to the power of the propagating wave. The second
term inside the square brackets represents the transverse interaction between
the radial electron motion and the radial electric field of the EM wave. For
the BWO the 'minus’ sign in the RHS of Eq.(2.4) should be replaced by "plus’
because in the BWO the wave propagates in the opposite direction.

In principle, Eqgs.(2.3) and (2.4) form a self consistent set of equations which
can be integrated numerically. However, for the sake of simplicity, we can im-

pose further assumptions. Let us assume p, < p., where p, is the transverse
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momentum. By using this assumption Eqs.(2.3) and (2.4) can be reduced to

d? A -
d—gf = Io(p)Re {ae™}, (2.5a)
d2 R ] 4 4

d_Cg = I (p)Im {ae™} + M2 pgp , (2.5b)
Oa 1 A :

P —ip

o o7 ) Io(p)e™"diy. (2.5¢)

In Egs.(2.5) we introduced the Pierce-like gain parameter C, given by C? =
I/(7% —1)°2, and used the normalization ¢ = Cz, p = kr and a = A/[C?(+2 —
1)?]. We also introduced the magnetic field parameter M = Q?/ (C?*~2/33) (For
M = 0 this set of equations reduces to those given in Ref. [24].).

Equations (2.3) and (2.4) can be used to calculate the efficiency,

n=0o—M/(w-1).

Here, the angular brackets indicate the averaging over electron phases 1 at the
entrance. These equations also allow one to derive the energy conservation law
which describes the correspondence between the changes in the beam energy
given by the efficiency 7 and the changes in the wave intensity |A|°. For the

TWT this relation is given by,
AP = Aof* = 21 (70 — ). (2.6)
For the BWO with well matched ends, a similar relation is given by,
Aol = 21(v — 1)7. (2.7)

Here |Ay|* is the wave intensity at the entrance, while at the well matched exit
the backward wave intensity equals zero. Note that, when we use the simplified

Eqgs.(2.5) instead of Eqgs.(2.3) and (2.4), the efficiency 1 can be given as,

n=00+1)/75 - 107, (2.8)
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where 7 = A — (dy/d¢). Correspondingly, Eqs.(2.6) and (2.7) can be reduced
ton = (|a|2 — |a0|2) /2 for the TWT case and /) = |ag|* /2 for the BWO case.
These relations are the same whether we have a guiding DC magnetic field or
not [24].

Finally, let us show the relation between our Pierce-like gain constant C' and

the well-known Pierce gain C,, given by

- Ich

Cy

Here I, is the beam current, Z. is the interaction impedance between the electron
beam and electromagnetic slow wave, and V, is the beam voltage. The relation

between C and C} can be shown to be

03 _ 473 (’VO _ 1)03

(-1 "

2.3 Small Signal Analysis

By linearizing Eqgs.(2.3) and (2.4), one can derive the dispersion equation de-
scribing the propagation of EM perturbations through the system. We assume
the perturbations in EM wave and electron motion to have axial dependence
exptl'z. After some mathematical manipulations, this yields the following dis-

persion equation:

2 ’Yg 30 2

(F - A) F2 + 0—3:| (FQ - il ) - O_3q2F2 (FﬂZO’Yg - 1) = 07 (29)

where ¢ = (|9 750)/I3(lg| r00)- In the case of zero magnetic field (Q = 0),
Eq.(2.9) reduces to that derived in Ref. [24].
For small C’s, we can introduce v = 2Y3T/C, § = 2Y3A/C, Qp = 21/3(2Q) / (708.00).
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Then, ignoring the small term T'3,973 ~ C~ reduces Eq.(2.9) to

(=907 1] (2~ 93) + 2 =0, 210

Note that, since this equation was extensively studied in Ref.[28], there is no
reason to repeat this study. Equation (2.10) is essentially the same as Eq.(13.26)
in Ref. [28]: our parameters v, §, 22 and ¢* correspond to Pierce parameters 44,
b, f? and o2, respectively.

Recall that the study done in Ref. [28] showed that, as the magnetic field
increases, the wave growth rate becomes smaller and it has its maximum at
larger detuning 0 than the case without magnetic field. For instance, when
02 = 0 (ImY)max = V3/2 and op; = 0, while when Q2 = 10 (Tm7y)pmax = 0.39
and dope =~ 3.2. Also note that in Eq.(2.9) which can be rewritten, in accordance
with [28], as

2
7—5=—%—7237% (2.11)
we ignored space charge effects. This assumption is quite reasonable for mod-
erate magnetic fields which is the focus of our present study. However, at large

magnetic fields the last term in Eq.(2.11) decreases, and correspondingly, the

validity of the neglect of space charge effects should be evaluated.

2.4 Nonlinear Results

2.4.1 Traveling Wave Tubes (TWT)

Equations (2.5) can be integrated to obtain the wave amplitude evolution with
axial distance. Figures 2.1 show the evolution of |a| versus ( for different values of

the magnetic field parameter M. In Figs. 2.1 the device parameters are: electron
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beam initial radius py = 2.0, wave initial amplitude oy = 0.03, and SWS radius
psws = 4.0. The saturation of the growth of |a| is mainly due to the electrons’
interception by the SWS. The interception starts near the maximum of the |a|.
We are interested in achieving the maximum before electron interception with
the SWS, because electron interception with the SWS may cause RF breakdown.
So adding an axial magnetic field can increase the travel distance of electrons
before hitting the SWS, and hence increases the maximum wave amplitude that
can be achieved before interception.

Further illustration of the effect of the magnetic field is shown in Figs.2.2
and 2.3 for different initial values of ||, where the contours of |,4,| are shown
in the plane the magnetic field parameter M versus the normalized detuning
A. All the simulation results are obtained for r,,, = 2ry, where 7y, and rg
are the SWS interception radius (the radial distance to the SWS) and electron
initial radius, respectively. The corresponding normalized parameters are py = 2
and pg,s = 4. It is clear from Figs.2.2 and 2.3 that for fixed values of A, as
we increase M, |oy,q.| initially increases till it reaches its peak. Then, if we
further increase M, |o,q.| decreases. This can be explained as follows. The
initial increase of M keeps the electrons away from hitting the SWS for a longer
length. So the EM power is enhanced for initial increase of M. Further increase
in the magnetic field causes the electrons to be guided away from the SWS. This
results in the reduction in the interaction impedance and, correspondingly the
maximum power. Note that, as follows from Figs.2.2 and 2.3, even a rather
weak magnetic field, which corresponds to M < 0.1, allows one to increase the
maximum wave amplitude from less than 2.0 (for M = 0) to 2.6. Since the

efficiency, as shown above, is proportional to |a|?, this indicates an efficiency
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increase by a factor of 1.7 due to the presence of a weak magnetic field. (The
estimates for the magnetic field for BWO case will be given in section 2.4.2.)
In case of infinitely strong magnetic field, as follows from [29], the maximum
amplitude is equal to 2.52, which yields the efficiency which is 1.6 times larger
than in the absence of By, but a little smaller than at M < 0.1.

It is always preferable to avoid interception until the maximum power is
achieved, because electron interception with the SWS may cause RF break-
down, which leads to pulse shortening. We denote the distance where the first
interception occurs by Z;,; and the length corresponding to the maximum power
(|maz]) DY Zimaz- In Figs.2.2 and 2.3 the regions in the M — A plane where
Lint > Zomaz a0A Ziy < Zpmas are shown. For interception free operation of the
device, the length of the device should be designed to be Z,,... So, to avoid
RF breakdown due to interception, we should tune the device to operate in the
region Z;,; > Zmae- Note that, as shown in Figs.2.2 and 2.3, at very different
levels of the input power, when py = psws/2, it is possible to reach the maxi-
mum power (|Qq.|) without interception. In all the calculated results, we took
psws = 4.0. Our calculations also showed that, when the beam is initially lo-
cated closer to SWS (for instance py = 3psws/4), the interception occurs earlier

and restricts the amplitude growth.

2.4.2 Backward Wave Oscillator (BWO)

The equations for the BWO are the same as Eqs.(2.5)for the TWT (see Appendix
A for details), except for adding a negative in front of the integral corresponding

to change of the group velocity direction. So, Eq.(2.5¢) for the evolution of «
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Figure 2.1: The normalized wave amplitude profile for the TWT with various
values of the magnetic field parameter M. The parameters of the device: py = 2.0

and ag = 0.03.
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Figure 2.3: TWT contours of || The initial conditions are py = 2.0, ag =

0.03, and the device normalized length is 15.0.
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becomes,

0 1 A ,
g —/ Io(p)e™™ dy.
21

5’_C 27

To determine the axial profile of a backward wave envelope, we solved these
equations for different initial values of aq and for different normalized detunings
A. We only pick the values of ag and A that result in a decrease of |a| to zero at
some value of (, as shown in Fig.2.4. The normalized distance at which |a| =0
is denoted in Fig.2.4 by (y. If we choose our BWO with normalized length {; and
assume its output to be matched, then the solution with that specific ag and A
corresponds to a possible operating mode. Figure 2.5 shows the value of |040|2
versus the normalized length (j, for different values of the magnetic parameter
M. For each value of M, there is a minimum length (o i, below which there
is no oscillation of the BWO. This length is known as the starting length of the
BWO [30]. As seen in Fig.2.5, this (g i, slightly increases as we increase the
magnetic field parameter M. The increase in (y .y is due to the reduction in
the coupling between the electrons and the RF wave with the increase in the
magnetic field parameter M o B2,

In the absence of the axial magnetic field (M = 0) Fig. 2.5 shows that for
large |ap|® (roughly for |ag|> > 1.8), there is interception of electrons by the
SWS. The maximum |ag|> achievable in this case is about 2.2. If we increase M
to 0.2 the maximum |ag|® can reach 2.8, but this value is achievable for longer
length of the device. Further increase of M does not help in enhancing the
efficiency of the device. As shown in Fig. 2.5, at M = 0.4 the maximum |0z0|2
is smaller than at M = 0.2. This can be explained by the decrease in coupling
between the electrons and the EM wave, with the increase in M. No interception

occurs for values of M > 0.2.

21



So far, we considered the BWO with zero reflection at the output end. In
real devices, there are some reflections which, as shown in Ref. [31], typically
reduce starting current and slightly increase the efficiency. The first effect can be
explained by the fact that reflections help to accumulate electromagnetic (EM)
energy in the interaction space. The second effect becomes clear, if we recall that
the axial structure of the wave envelope with the zero amplitude at the collector
end is unfavorable for the efficiency, since electron bunches, being modulated by
the strong EM field at the entrance, give up their energy to a weak EM field at
the exit.

The value of the Pierce-like gain C used in the simulations is C' = 0.291.
Figure 2.6 shows the device efficiency versus its length for various values of the
magnetic field parameter M. For the specific device length of 40 ¢cm, one can see
an increase in the efficiency from 20% (B, = 0) to about 24% (B, = 45 Gauss

corresponds to M = 0.2).

2.5 Conclusion

The operation of plasma-assisted TWTs and BWOs without a strong guiding ax-
ial magnetic field has the feature that the electrons can move radially towards the
SWS under the influence of the RF fields. Furthermore, the transverse motion is
dominated by transverse forces due to RF fields. The proximity of electrons to
the SWS increases the coupling between the electrons and the localized field near
the SWS. Hence, the output power and the device efficiency increase, and the
optimum interaction length shortens. However this radial motion may lead to

electron interception by the SWS, which is a major cause of output power satura-
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tion. We showed that adding a weak external magnetic field helps in optimizing
their operation in the regimes where we can increase the energy extraction from
the beam before electron interception with the SWS occurs. We also showed
that magnetic field tapering can reduce the optimum interaction length, which
allows one to shorten the device.

For the BWO case, we showed that additional external magnetic field is not
always beneficial in enhancing the device efficiency, since the starting (and opti-
mum) length increases with the magnetic field. Therefore, when the interaction
length exceeds the starting length only slightly (for M = 0), the additional ex-
ternal magnetic field lowers the output power (It can even shut down the device
operation). However, for relatively long devices, adding this weak external mag-

netic field (< 100 Gauss) can enhance the device output power and efficiency.
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Chapter 3

PASOTRON Helix Slow Wave

Structure

3.1 Introduction

In this chapter we present survey and analysis of the helix used as a slow wave
structure, which is usually employed in the PASOTRON BWO. In section 3.2,
dispersion curves for the sheath helix are presented. Section 3.3 describes the
field structure for a tape helix, where dispersion curves obtained by CHRISTINE
132, 33] for the helix PASOTRON tube are presented. The fields of the first
harmonic PASOTRON BWO is presented in section 3.4. These fields are used

in the models discussed in subsequent chapters.

3.2 Sheath Helix

The sheath helix is a simplified model to aid in understanding the operation of
an actual helix. An actual helix has a certain radius Rj and pitch period A,

see Fig. 3.1. Sheath helix can be formed by gathering many helices, having
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a common axis and slightly displaced such that the pitch period is filled up.
Thus the structure we have would have anisotropic conductivity, infinite along
the pitch direction, and zero normal to that direction. The pitch direction is
€4, = COS Ppeg + sin pye., where cot ¢, = 2mR;,/A,. The analysis of this helix
type was presented by Sensiper [1]. Due to the skew boundary conditions it is
necessary to have a hybrid mode (both TE and TM) guided by the structure.
The axial electric and magnetic can be written in cylindrical coordinates (r, 0,
z) as,

. AL (kr), T<R
Eo(r.0, ) — ety | Antnlr) '

A°K,(kr), 1> Ry

B.(r,0,2) = ekz=n) Bulu(er), v < By ,

B°K,(kr), r> Ry
where I,, and K,, are the n'* order modified Bessel function of first and second
kind, respectively. The variables k and k are the axial and transverse wavenum-
bers, respectively, related through k = y/k? — w?/c2. Applying the skew bound-
ary conditions, (1) the electric field tangential to the helix is continuous with
zero component along &, , (2) the magnetic field along &4, is continuous, we get
the dispersion relation [1, 34]:

Il (kRy) K] (kRy)  (K*Rj — nkRy, cot ¢,)?

I,(kRy) K, (kRp) (w/e)2R2K2R2 cot? ¢,

The dispersion relation is plotted in Fig. 3.2 for different modes n. From
that figure only waves with phase velocity less than the speed of light v,, < ¢
are guided by the helix. Loading a circular waveguide by a sheath helix enables
fast modes to propagate besides the slow ones. Analysis of a circular waveguide

loaded by a sheath was carried out by Uhm et al. [35].
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Figure 3.1: The figure on the left is the shape of an actual helix with radius R},
and pitch period A,. The sheath helix is shown on the right where the lines show

the direction of infinite conductivity along the pitch direction &g, .

~J

\, Forbiden ,/
Region |

th/cot(p

Figure 3.2: Dispersion curves for a sheath helix for different modes n. The helix,

for which the dispersion curves are plotted, has cot ¢, = 7.0439.
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3.3 Tape Helix

The sheath helix model gives much information about propagation along the
actual helix SWS. Yet, it doesn’t manifest the periodicity of the actual helix
configuration. To analyze this property the tape helix model is usually used.
This model consider a tape helix of small width 6 compared to the helix pitch
period A, (§ < Ap). The fields in this periodic structure can be expanded in
Floquet spatial harmonics [34]. We use the skew symmetry, i.e. that moving an
axial distance 2z’ and rotating along with the helix with an angle 27z"/\;, the
fields should be the same except of a phase factor exp(ikz’). Thus, when we

apply the Floquet theorem, the fields can be represented as,

E(r,0,z) En(r)

— eikz

B(r,0,z2) n B, (r)

i(2mzn/Ap—nb)
€ )

The dispersion characteristic for the tape helix was also obtained by Sensiper
[1], and shown in Fig. 3.3. Asin all open periodic structures the dispersion curves
for the guided mode is bounded below the light line, such that phase velocity
for any space harmonic with axial wavenumber k, = k + 27n/\, is less than
the speed of light. The w — k, relation for the n® harmonic can be obtained by
shifting the origin by n units along the ka/ cot ¢, axis. The resultant figure will
be similar to Fig. 3.2 except for being sliced periodically with forbidden region.
So in principle, Fig. 3.2 carries most of the dispersion properties for the different
spatial harmonics in the tape helix.

It worth mentioning that although the dispersion characteristic is symmetric
for positive and negative wavenumbers, the field structure for k& and —k are not

the same. In fact we could get the field with —k axial wavenumber from the k
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N

Figure 3.3: (a) and (b)-Solutions of the tape helix determinantal equation,
ka/ cot ¢, for ¢, = 10 degrees, md/\, = 0.1, where § is the tap helix width.
(From Ref. [1]: Electromagnetic Wave Propagation on Helix Structures, vol. 43,

pp. 155, Proceedings of the IRE 1955)

one, simply by replacing every z, and 6 by —z, —@, respectively. From another
prospective, the n*” harmonic with axial wavenumber k,,, when reflected becomes
the —n'* harmonic with —k,, wavenumber; see Fig. 3.2.

The circular waveguide loaded by a thin tape helix was studied in Ref. [36].
In that case it was shown that fast waves exist in place of the forbidden regions,
which are completely eliminated [36]. Exact treatment of a circular waveguide
thin tape helix of arbitrary width in the presence of radially stratified dielectric
layer was made by Chernin et al. [32]. Their model was incorporated in the large

signal TWT simulation code CHRISTINE [33]. The result of using this code in
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Figure 3.4: Dispersion curve obtained by the code CHRISTINE for the helix
PASOTRON with parameters: circular waveguide radius R, = 5 cm, helix radius
Ry, = 2.5 cm, helix pitch period A\, = 2.28 cm, and helix tape width 6 = 0.6 cm.
Only the slow wave solution is obtained by CHRISTINE. The dashed lines are

the light lines which separate the slow and fast wave regions.

determining the the exact dispersion curve for PASOTRON helix SWS which
has the parameters: circular waveguide radius R, = 5 cm, helix radius R, = 2.5
cm, helix pitch period A, = 2.28 cm, and helix tape width 6 = 0.6 c¢m, is shown
in Fig. 3.4. In that figure only the dispersion for the slow wave is computed by
CHRISTINE, where it shows that the linear approximation is valid for the helix
PASOTRON slow wave dispersion.

In the presence of an electron beam, the beam interacts with the different

harmonics, depending on the type of operation of the tube. For TWT amplifier
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tubes employing helix SWS, the beam interacts with the zero harmonic, which
has positive group velocity close to the velocity of beam electrons, see Fig. 3.2.
For BWO oscillator operation, the interaction could be with any of the n=1,
n=2,...etc. harmonics, which has negative group velocity. For the PASOTRON
helix BWO tube with the parameters described above, only interaction with the
first harmonic n=1 was observed in the experiment [37, 27|, where RF frequency
was approximately 1.2 GHz. So a model that describes the operation of this
tube could be built on considering only the interaction of the electron beam
with fields of the first harmonic. The radial dependence of the field of that

harmonic is obtained in the next section.

3.4 First Harmonic Fields for Helix PASOTRON

Tube

The purpose of this section is to describe the fields for the first harmonic in a
system shown in Fig. 3.5, i.e. the helix located inside a circular waveguide.
To simplify the analysis, the helix is assumed to be a filament or a small tape
width helix such that the current flow on the helix is only along the pitch angle
direction. As shown in Fig. 3.5, we denote the helix radius, period, and the outer
cylinder radius by Ry, A\, and R, respectively. In the absence of an electron
beam, the RF fields guided by a helix loaded waveguide can be described by a
Floquet series. With the use of the helical symmetry [34], the axial electric and

magnetic fields can be written as,

EZ(X, t) _ Z Ezn(r)ei(knz_‘“t_”e), BZ(X, t) _ Z an(r)ei(knz—wt—ne), (31)
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Figure 3.5: Helix inside a circular waveguide.

where x represents the three coordinates, , § and z. For the n*”* harmonic, the
axial wavenumber k,, is equal to k + 27n/\y,, where the propagation constant k
is determined by the SWS dispersion relation [36, 32], see Figs. 3.4.

As follows from Maxwell equations, the space harmonics of the axial electric

and magnetic fields should satisfy the following equation,

2 EZTL
(lﬁrg o ,{2) =0, (3.2)
an

where k,, is the absolute value of the radial wavenumber defined for the case of

slow waves by k2 = k2 —w?/c?. So the solutions for ., (r) and B,,(r) are given

(

I,(kur) 0 <r < Ry,
Ezn(r) = ap (33)

Kn(Ca)ln () In(Gu) K (nr)
| [n ) R tntanTaGoRatmy Th ST < e,

e

L, (Kknr) 0 <7< Ry,
B, (r) = b, (3.4)

/ K (&) In(knm) =12 (Cn) Kn(knT)
|12 (m) R ot Thicr oy T <7< Re,

where 2 = (?R?/R? = K2R} = (k2 — w?/A)R? | and I,, K, are the n'

order modified Bessel functions of the first and second kind, respectively. The

derivatives of these functions with respect to their arguments, are represented by
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I' and K. The functional dependence inside and outside the helix are chosen
such that FE.,(k,r) and 0B,,(k,r)/0r are continuous at r = R, and vanish at
r=R..

Using Maxwell equations, we can represent the transverse field components

in terms of of the axial field components,

Eon(r) = %2 (—ikn%Em(r) _ z;an(r)) , (3.50)
Egn(r) = %21 (—"TI%EZ”(T) + i%%Bm(r)> , (3.5b)
Bon(r) — Ki% (—ikn%fzm(r) + %%Ezn(r)> | (3.5¢)
Bun(r) = 5 (~ "2 Bunlr) = 122 Bun(r)) (354)

The relation between the coefficients a,, and b, in Egs. (3.3, 3.4) can be
obtained by applying the boundary conditions on the tangential magnetic field
at r = Ry, . We assume that the current on the helix is oriented along the helix
pitch direction. The helix pitch direction can be represented by a unit vector
ey, given as, ey, = cos@yey + sing,e,, where ¢, is the helix angle given by
cot ¢, = 2mRy/An, €., and ey are unit vectors along the radial and azimuthal
directions, respectively. So the surface current on the helix is assumed to have

the form,

J=Je,,. (3.6)

In accordance with these assumptions, the discontinuity of the tangential mag-

netic field at r = R}, is given through,
| 1 | 4
Bl — B = = Jcos ¢, Bi— By =—"Jsing,,  (3.7)
C C

where the superscript i and o denote the field components at r = R, and r = R,

respectively. We can eliminate the current J from the above two equations which
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results in,

Bj — Bj = — (B. — B?) tan ¢,,. (3.8)
In terms of the Floquet harmonics expansion, this condition is equivalent to
Bén - Bgn - - (B;n - B,(z)n) tan¢P (39)

Substituting with By, from Eq. (3.5d), and after some mathematical manipula-

tions, we obtain the relation between the constants b,, and a,,

K3 (G) 1) — 1(Ga) K3, (M) 1 (Ga) inw/c
Ko (Go) In (1) — 1n(Co) K () 17,(Cn) nkp — M tintang,

b, = a,

(3.10)

All the field components of the n' harmonic can be scaled with the constant
a,. In our study, we are interested in the interaction with the first space har-
monic. So we can write the fields of that harmonic as, B, = aE(r)ei(k1z-«t-6),
and B; = afi(r)ei(klz_“’t_a). The envelope a has the dimension of the field E or
B, where E and B represent the normalized first space harmonic electric, and
magnetic field respectively. These normalized fields can be written as,
E(p) = —iE] (p)é, + Ef ()& + E! (p)é..,
(3.11)
B(p) = B (p)é, —iB}(p)&y — iB (p)e.,
where ki is the axial wavenumber for the first harmonic (ky = k + 27/\p),
the radial dimension r is normalized to p = k7, and k is the absolute value of
the transverse wavenumber for the first harmonic (k? = k% — w?/c?). The full
expressions for the functions Ef (p), Eg(p), Ef(p), BI(p), Bg(p), and B/ (p) are
given in Appendix B.
The radial dependence of the electric and magnetic fields for the first spatial

harmonic is plotted in Figs. 3.4. In Figs. 3.4, the major field components are

along the radial and axial directions, with small components along the azimuthal
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direction. These radial and axial fields are maximized at the position of the helix.
Concentration of the EM energy close to the slow wave circuit is common to all
the SWSs. So to enhance the efficiency of a device employing the SWS, the
electron beam has to be close to the slow wave circuit for maximum interaction.
This introduces a major problem of beam interception by the slow wave circuit,
especially in devices with radial motion like the PASOTRON. Nevertheless, the
helix has the advantage of being transparent to most electrons passing through it
(a small percentage of electrons is intercepted by the helix conductor), allowing

most electrons to experience this large field while passing through the helix.

36



Normalized Field

(b) Magnetic Field Components.

Figure 3.6: Normalized electric and magnetic field components for the first har-
monic for the helix PASOTRON tube with parameters as in Fig. 3.4, for fre-
quency about 1.2 GHz.
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Chapter 4

Efficiency of the Helix PASOTRON

Backward Wave Oscillator

4.1 Introduction

In chapter 2, the solution of the electrodynamic system requires solving both the
equations of motion and the envelope evolution equation. Under steady state
conditions, the beam particles positions and momenta at the entrance to the tube
act as the initial conditions for the equations of motion. For the TW'T amplifier
case, the entrance amplitude of the input RF wave with a given frequency, acts
as the initial condition for envelope equation. So the equations of motion and
the envelope equation are solved as an initial value problem. When the tube
operates as a BWO, the situation becomes complicated. We have to solve for
the wave amplitude at the entrance and the RF frequency, given the boundary
reflections at both ends of the tube (In chapter 2, for matched end devices,
we seek |ag| and A such that the amplitude goes to zero at a certain length).
Usually the boundary reflections at both ends are not accurately known from the

experiment, and even if an estimate to the boundary reflection can be measured,
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its value changes with the adjustable slide at one end of the device (see Fig.
1.2). So, in order to understand the operation of the PASOTRON helix BWO,
one takes the approach of solving the initial value problem using an estimate of
the amplitude of the backward wave at the entrance and the its frequency. We
call this model an “amplifier model”, indicating the similarity of solution with
the TWT case. The effect of boundary reflection on frequency of operation and
different axial mode excitation is the subject of the next chapter.

A 3D “amplifier model” describing the steady state operation of the helix
PASOTRON (Plasma-assisted slow-wave oscillator) Backward Wave Oscillator
(BWO) is presented. This model contains an equation for the envelope of the
wave, whose first space harmonic is synchronous with the electron beam for the
case of interaction with the backward wave, and equations for the electron 3D
motion under the action of all the field components. In the latter equations,
Hamiltonian formulation is used to reduce the number of coordinates to be inte-
grated. The results showed that electrons injected inside the helix are those that
contribute most to the device electronic efficiency compared with those electrons
injected outside the helix. It is also shown that by reducing the beam size, high
efficiencies up to 55% can be achieved. Such high electronic efficiency, which is
unachievable in conventional BWOs driven by magnetized electron beams with
one-dimensional motion, can be explained by a favorable effect of the transverse
motion of electrons.

The absence of the strong guiding magnetic field in PASOTRON BWO tubes,
gives electrons the freedom to move not only axially but also transversely under
the action of the RF wave. For symmetrical SWS (e.g. RWG), the effect of this

transverse motion on the device operation was studied in Ref. [24]. Later, it was
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shown in Ref. [25] and in chapter 2 of the present thesis, that adding a small
axial magnetic field in such devices (less 100 Gauss) could help to increase the
electronic efficiency by about 5%.

In this chapter, we develop the theory describing the operation of the he-
lix PASOTRON BWO. The chapter is organized as follows. In section 4.2 we
formulate the problem. First, in subsection 4.2.1, we present the equation de-
scribing the field envelope evolution. Then, in subsection 4.2.2, the equations of
motion are deduced using the Hamiltonian formalism. The numerical results are
presented and discussed in section 4.3. Finally, the conclusion is given in section

4.4.

4.2 Formulation

Below we develop the stationary model of the helix PASOTRON BWO. In our
treatment we assume that the helix wires are thin enough, so we can ignore the
beam interception by the helix. We also neglect ohmic losses in the device, as the
device oscillation frequency is rather low; viz. 1.2 GHz. At so low a frequency
the attenuation due to ohmic losses is negligible.

In this model, we assume that the plasma ions provides neutralization for
the DC space charge forces of the electron beam (the plasma electrons move
faster to the device outer tube). The typical electron beam density at the helix
entrance is about 1.6 x 10%cm =2 and for a 40 kV beam this corresponds to about
a 35 cm plasma oscillation length (Geometrical factor makes that length even
larger). Due to beam spread by the RF field, the beam density is very small

away from the helix entrance and the effective beam plasma oscillation length is
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much larger than helix length which is about 40 cm. Thus the beam AC space
charge effect is neglected.

The RF slow wave is guided by the SWS shown in Fig. 3.5, where R}, A\;, and
R. denote the helix radius, helix period, and the outer cylinder radius, respec-
tively. According to the output frequency range of the helix PASOTRON BWO,
we can assume the first spatial harmonic is the only synchronous harmonic with
the electron beam. So the envelope evolution equation and equations of motion

encounters only this harmonic whose field components are given in appendix B.

4.2.1 Envelope Evolution Equation

The total field inside the periodic structure is represented as a Floquet sum
of spatial harmonics (Ewy = 3., En = 3, Re{e(z,t)E,(r)e!kns=wt=n0)1 " gee
appendix B). The stationary envelope evolution equation for ¢(z) obtained in

appendix A is

2r7. “ .
86(2) _ _klzzngl <X . E*(,r,)e—l’l//> (41)
0z E

Uz beam, g

where
P is the electron phase with respect to the RF wave, ¢ = k12 —wt —0;

(- Dbeam, 4, indicates averaging over the distribution in the initial radius ro and

the initial phase 1o, (- )peam. vo = J [ - - - Todrodio /(7 R})

Ry is the initial beam radius;
1 is the total input current;
|E,| is the normalized axial electric field amplitude of the first harmonic

(see Fig. 3.4) evaluated at r = Ry;
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Limt is the interaction impedance defined as, Z;,; = |Ez1(Rb)|2 /(2K2P,),
where P, is the total power flow, and |E,;(Rp)| is magnitude of the
axial electric field for the first harmonic evaluated at R; correspond-
ing to that power flow P, (Note that the ratio of th/|l77z1|2 doesn’t
depend on Rp). The actual helix in the PASOTRON is made of a
tube with circular cross section, but for simplicity the interaction
impedance Z;,,; was calculated by using the code CHRISTINE [32],
which uses a tape helix model. The geometrical parameters used
with CHRISTINE are R, = 2.5 cm, R. = 5 cm, A\, = 2.28 ¢cm and

6 mm helix tape width.

In general, the product v - E’{ contains contributions from both axial UZE:I
and radial UTE:l interactions. The radial dependence of the field components
is illustrated in Fig. 3.4. The helix parameters used in Fig. 3.4 are R, =
2.5 ¢cm, R, = 5 cm, )\, = 2.28 c¢cm, and the operating frequency is 1.26 GHz,
which correspond to the PASOTRON experiment at the University of Maryland

37, 27).

4.2.2 Equations of Motion

The Hamiltonian formulation is used to reduce the number of differential equa-
tions required to describe the electron motion, by introducing a transformation
which makes one of the coordinates cyclic and its corresponding momentum to
be a constant of the motion. For fields under consideration, the instantaneous

magnetic potential vector is given by,

A = Re{a(2)E}, (4.2)
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where a(z) is related to €(z) in Eq. (4.1) by a(z) = (c¢/iw)e(z). Thus, the

Hamiltonian in cylindrical coordinates is given by,

Py — qrE} (sr) Refa(2)e" }/ >

r

H =c |m?c + (pr — qu(mr)Im{a(z)ei¢}/c)2 + (
571/2

+ (pz — qu(nr)Re{a(z)ew}/c) } , (4.3)

where ¢ is the particle charge, which is ¢ = —e for electron with absolute charge
e; m is its mass; and c is the speed of light. The functions Ef(kr), E (rr),
and Ef (kr) are defined in the Appendix B. This Hamiltonian description can
be obtained after substituting the magnetic potential vector, and E from Egs.
(3.11) in the Hamiltonian formula for cylindrical coordinates (see for example
Ref. [38]). As we are dealing with a steady state field profile, without any tem-
poral variation, it is appropriate to take the axial distance z as an independent

parameter instead of the time ¢. This is done through the variational principle,

5/ (prv'" + pel + p.i — H) dt =0, (4.4)
) / (prdr + pedf + p,dz + pdt) = 0, (4.5)
In Eq. (4.5), pr = —H becomes the canonical momentum to the time variable ¢.

Equation (4.5) keeps its form, if we make the following normalizations: ¢ = wt,

zZ= (UJ/C)Z, p = KT, ﬁt - —H/mC2, ZA)Z - pz/mca ﬁp - pr/(gmc)a ﬁ@ - pr/(mcz)a
and a(z) = ea(z)/mc?, where k is the first harmonic transverse wavenumber and

g = k/(w/c) is its normalization. So Eq. (4.5) can be written in the form,
5/ (B + Dol + pif’ — (—p-)) d2 = 0, (4.6)

where prime superscript indicates total derivative with respect to Z. The form

of Eq. (4.6) indicates that —p, can be used as the new Hamiltonian with Z as an
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independent variable instead of ¢ which becomes one of the canonical variable
with the conjugate momentum p;. The new Hamiltonian in this description is

H,, which is given by,
Hy(0, po; p. Dri . Bus 2) = =,

- [ﬁ? - (92% + El(p)] m{&@ew})

1/2

2

+ E{(p)Re{a(z)e™}.

<9ﬁo + ol <p>Re{a<z>ew}>2 1
p

(4.7)

where 1) = h—t—0 and h = k/(w/c) is the normalized longitudinal wavenumber.
We make the transformation t, py, 6, pg — ¥, Py, 0, Py, through the generating
function F' = (h2 —1—0)P,+0P; see Ref. [39]. This yields: Py =, Py = py+7
, where + is the ratio of electron total energy to the electron rest energy.

So the canonical variables are p, p,; 0, Py; ¥,~, and the new Hamiltonian is

given by,
N . ~ . 2
Hy(p, Py 0, Po; 1, 7) = hy+EL (p) Re{a(z)e™ } - {72 - (gﬁp + Bl (p)1 m{&(Z)e”’}) -

1/2

<g<P9 — )+ pEf <p>Re{a<z>eW}>2 N

p

Notice that new coordinates are p, 6, 1, and their corresponding canonical
momenta are p,, Py, v, respectively. The new Hamiltonian is independent of 0,

which makes Py a constant of motion. Thus, the Hamiltonian equations for the
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rest of coordinates are:

dp _, 7 Sy

z-" 5 S, (4.9)
d ~ RN S, » RN So » Al N i
D~ (o) m{a(z)e) — (o) Refa(2)e*} + 2B (p) Im{a(2)e),
(4.10)

dp _ 5,9
= (4.11)
dp, 61@0 (p) N i Sp 8Ef (p) - i
i o Re{a(z)e™} 5. oy Im{a(z)e™} )

So (9B —=7)  OEJ(P)  rriy '

+ S ( 7 9p Re{a(z)e™}

where S,, Sp and S, are given by, Sy = (g(Pg — ) + pEg(p)Re{d(z)ewD /P,

S, = gp, + Ef (p)Im{a(2)e™}, and S. = \/72 — 82 — 5§ — 1, respectively. The
vector S is given by, S = S,&, + Sy& + S.€, = yv/c.

Due to the discontinuity in the radial field shown in Fig. 3.4, the canonical
momentum p, is also discontinuous at the helix position. For the purpose of
numerical integration, it is convenient to use the continuous quantity S, = v7/c,

instead of p, . So we replace Eq. (4.12) by,

A

dS,  OBL(p) i iy L 956 (9P =) OE{(p) .o
= =9 9 Re{a(z)e™} + S, e p Re{a(z)e"}

di) » .
4 dq{)Ef(p)Re{d(z)ew}. (4.13)
z
In deriving Eq. (4.13) from Eq. (4.12), we neglected the term containing
da(z)/dz. We assume that the transverse variation of the axial field dominates
the axial variation (£ Log |a(2)| < glOEI (p)/0p|/|EL (p)]). which is satisfied for

the device under consideration. So the system of equations to be solved are Eqs.

(4.9), (4.10), (4.11) and (4.13), together with the field evolution Eq. (4.1), which
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in dimensionless form can be written as,

da(s) _ <Z s E*(r)e—“/’> _ (4.14)

beam, g

Here C' is a dimensionless constant given by,

h? Ll
Zme?/e’

C = (4.15)

A

Ezl(Rb)

Note that the constant C' depends only on the beam current, frequency, and the
geometry of the slow wave structure (the helix loaded tube).
For the case of one dimensional motion of the annular beam where only axial

interaction is taken into consideration, Eq. (4.14) can be simplified to,

. K2 »
Ea(Ry) = i—57Zined (7)), (4.16)

mc? /e

da(2)
BE

A

where i(w/c)a(2)E,1(Ry) is the axial electric field at the radius of the annular
beam. Equation (4.16) multiplied by iw/c gives the conventional one-dimensional

interaction equation with dE.(z)/dz x Zy, I (e™) -

4.3 Numerical Results and Discussion

Equations (4.9), (4.10), (4.11), (4.13) and (4.14) can be integrated for a certain
initial amplitude a(0), which corresponds to a certain power flow in the opposite
direction at the beam entrance. Trajectories of electrons uniformly distributed
over their entrance phase and the beam cross-section are computed. The elec-
tronic efficiency n = (70 — (7))/(7 — 1) as a function of the axial distance is
calculated for the electrons, whose trajectories depend on their initial phases and
their initial radial positions, where 7y is the electron initial relativistic factor and

(...) corresponds to averaging over initial entrance phase and beam cross-section.
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The electronic efficiency is simply referred to as efficiency as it is the only ef-
ficiency considered in this study. The helix SWS parameters used are: helix
radius Ry = 2.5 ¢cm, tube radius R, = 5.0 cm, pitch period A\, = 2.28 cm. The
electron beam is assumed to be a mono-energetic solid beam with radius Ry.
The device is assumed to operate with a nominal beam voltage about 40 kV
beam at frequency 1.26 GHz.

The calculated device electronic efficiency is shown in Fig. 4.1 as a function of
the backward power, assumed a given value at the beam entrance, for different
beam parameters’. The results show that the maximum electronic efficiency
for the beam radius R, = 1.5 c¢m is almost doubled compared to its value for
Ry, = 2.8 cm case, even though the beam current [, is significantly reduced in the
small radius case. This was verified in the University of Maryland experiment
(37, 27, 26], where for a small beam radius of 1.5 ¢cm and 40 kV electron beam,
electronic efficiency over 50% was achieved. In each of the groups (a) or (b)
in Fig. 4.1, it is assumed that the operating frequency remains constant with
slight change of beam voltage V. This corresponds to experimental conditions,
where due to the end reflections, the operating frequency was discretized instead
of continuously varying with the beam voltage as in devices with well matched
output [21].

The typical output power of this device is about 500 kW [21], and the experi-

mentally measured Q-factor is about 400 [26]. Let us assume that the diffraction

1Only the power associated with the backward wave, which is the interacting wave, is
considered. There is another amount of power associated with the no-interacting forward

wave, where the net power flow is the difference between the two.
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Efficiency n [%]

Og (a) R,=2.8 cm, |, =75 Amp. |
(b) Rb:1'5 cm, Ib:Zl Amp.
_10 L L L I
0 1000 2000 3000 4000

Backward Power at the Beam Entrance [kw]

Figure 4.1: Efficiency versus RF backward power at the beam entrance for dif-
ferent beam parameters (Only the power associated with the backward wave,
which is the interacting wave, is considered. There is another amount of power
associated with the non-interacting forward wave, where the net power flow is the
difference between the two). The SWS is a helix of radius Rj, = 2.5 cm, loaded
inside a circular waveguide of radius R. = 5 cm. The helix period A, = 2.28 c¢m.

The operating frequency is f = 1.26 GHz.
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Q-factor can be estimated by a simple formula,

wlL

O~ IR

(4.17)

where | R| is the reflection coefficient (usually at one end all the power is reflected,
with the other end reflection coefficient designated by |R|), v, is the group
velocity for the given helix parameters, and L is the cavity total length. Then,
using the measured value of @ (400), the known cavity length (L ~ 40 cm),
and the calculated group velocity (v, = 0.145¢), one estimates the reflection
coefficient as |R| ~ 0.818. As the output power from the device P,,; is related
to the backward power inside the device B, through, P, = (1 — |R|?)Py,. So
for 500 kW output power, the backward power level is about 1.5 MW. From Fig.
4.1, this backward power level corresponds to efficiency of 25% for the beam with
40 kV, 75 Amp., and initial radius R, = 2.8 cm. The efficiency rises up to 55%
for the beam with 40 kV, 21 Amp., and initial radius R, = 1.5 cm. This increase
in efficiency by reducing the initial beam radius was further explored. The radial
trajectories, efficiency variation with the axial direction, and the polar plot of
the radial distance with the particle phase were analyzed.

The radial trajectories for a large initial beam radius (R, = 2.8 ¢cm) are shown
in Fig. 4.2. This figure shows the particle trajectories for different initial radial
positions and different initial phases. Most of the particles are intercepted by
the outer tube at about 22 c¢m, and the majority of remaining particles becomes
trapped by the potential well formed around the helix by the radial electric field
E, (see Fig. 3.4). To see how the initial radial position inside and outside the
helix affects the device efficiency, the efficiency variation with axial position Z
is shown in Fig. 4.3 for electrons initially entering either inside or outside the

helix. In Fig. 4.3, it is evident that particles which initially entered inside the
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helix are those that contribute most to the total efficiency. This indicates that
enhancement of the total efficiency can be accomplished if we inject an electron
beam of a small radius inside the helix. The case of small radius electron beam
(Ry = 1.5 cm) is shown in Figs. 4.4, 4.5. The trajectories of selected beamlets
are shown in Fig. 4.4, one beamlet near the axis and another far away from the
axis. Different rays within the beamlet correspond to different electron entrance
phases. From that figure, we see that electrons immersed near the axis experience
much smaller radial spread than those located far away from the axis. This
corresponds to the small deviation of phases for electrons near the axis, which
means that electrons immersed near the axis are much more coherently bunched
than those far away from the axis.

To understand the bunching mechanism, a polar plot is shown in Fig. 4.6.
Here, the radial coordinate corresponds to electron radial location in ¢cm and
the particle phase with respect to the wave is used as the polar angle. In this
figure, it is shown that the bunching occurs between 1 and 2 cm of radial position
(recall that at the entrance R, = 1.5 cm) and at a phase ¢ ~ 37/2. This phase
corresponds to maximum interaction with the axial electric field, and minimum
interaction with the radial field [see Eq. (4.10)]. The formation of the bunch
between 1 and 2 cm enables the electrons to be exposed to a significant field near
the helix, which is at 2.5 cm. This explains the high efficiency of the device. A
few particles experiencing radial oscillations are shown in Fig. 4.6 with banana
trajectories around the m phase and the helix 2.5 e¢m radial position. These
radial oscillations are due to potential well formed by the radial electric field.

The effective field amplitude seen in the PASOTRON by radially moving

particles is very different from that of the conventional BWO where electrons
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Radial Position r [cm]

0 | 10 2‘0 3‘0 40
Longitudinal Position Z [cm]

Figure 4.2: The radial trajectories for electrons with different entrance phases.

The operating frequency is f = 1.26 GHz, beam current I, = 75 Amp., beam

voltage is 40 kV, and initial beam radius is 2.8 cm. The helix radius is R, = 2.5

cm, and is loaded inside a circular waveguide of radius R, = 5 cm. The helix

period A\, = 2.28 cm. The power in the backward direction at the electron beam

entrance is assumed to be 1.5 MW.
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Efficiency n [%]

—— for all the particles
_ for particles with r0<Rh

for particles with >Ry,

0 10 2‘0 3‘0 40

Longitudinal Position Z [cm]
Figure 4.3: Electronic efficiency depends on electrons initial radial positions in the
beam. Electrons inside the helix have higher efficiency than those outside the helix.

Parameters are the same as Fig. 4.2.

propagate only axially. The normalized effective amplitude of the axial field
seen by electrons injected very close to the axis is shown in Fig. 4.7. Here,
different curves correspond to the field seen by electrons with different initial
phases. So, in this case electrons are modulated near the entrance by a small
amplitude field, while the stronger field near the helix provides energy extraction
from these electron bunches. This is very different from the conventional BWO
with only axial motion, where at the entrance the electrons are modulated by a
large amplitude field while the energy is extracted from the bunches by a weak
field which is, apparently, unfavorable for the interaction efficiency. (Note that
a method of enhancing the efficiency of the conventional BWO, by increasing
the beam coupling impedance to the wave near the output was analyzed in Ref.

[40].)
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Radial Position [cm]

0 = 1‘0 2‘0 3‘0 40
Longitudinal Position Z [cm]

Figure 4.4: The radial trajectories of electrons with the different rays corre-

sponding to different entrance phases for some selected beamlets. The operating

frequency is f = 1.26 GHz, beam current I, = 21 Amp., beam voltage is 40 kV,

and initial beam radius is 1.5 cm. The power in the backward direction at the

beam entrance is about 1.5 MW. An electron beamlet entering close to the axis

experiences smaller radial spread than a beamlet entering away from the axis.
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Longitudinal Position Z [cm]

Figure 4.5: Electronic efficiency for a beam with a small initial radius (R, = 1.5

cm). Parameters are the same as in Fig. 4.4.

150/
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180|

210

Figure 4.6: Polar drawing of the particle radial distance as the radius in cm, and

the particle phase 1 as the polar angle. Parameters are the same as in Fig. 4.4.
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Figure 4.7: Normalized effective amplitude seen by particles initially injected

close to the helix axis. Parameters are the same as in Fig. 4.4.

4.4 Conclusion

We developed a 3D model which describes the operation of the helix PASOTRON
BWO. Using this model enabled us to understand the operation of the device,
in which the transverse motion plays a major role in the efficiency enhancement.
This transverse motion allows electrons to move from initial near-axis location,
where the RF field is small, to the large field around the helix. Bunched at
the proper phase, these electrons interact strongly with a large amplitude field
and give up most of their kinetic energy to the field. This explains the higher
efficiency of this device, compared with its linear beam counterparts.

The efficiency of the electrons initially injected inside the helix was compared
to those initially injected outside. Electrons injected inside the helix were shown
to be more efficient in exciting electromagnetic waves than those injected outside.

It was shown that the reduction of the beam radius from its original value of
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2.8 cm at 75 Amp to 1.5 cm at 21 Amp with a 40 kV electron beam allows
one to increase the electronics efficiency from 25% to be more than 55%. These
result was recently verified experimentally [41, 37, 27, 26], with the same typical

parameters.
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Chapter 5

Time Dependent Model for the Helix

PASOTRON BWO

5.1 Introduction

In chapter 4, the steady state operation of the helix PASOTRON BWO was stud-
ied in details. In that study, single frequency stationary operation of the device
was assumed. However, that assumption is not always satisfied. Very often, at
high currents and/or strong end reflections the device exhibits auto-modulation,
where two or more modes are excited simultaneously. The conditions for the ex-
istence of auto-modulation and the regions of stable (single mode) operation are
studied in this chapter through a time dependent model of the device. Through-
out the discussion, we always compare the results of the one dimensional (1D)
case with the three dimensional (3D) case. The 1D case refers to the model when
a longitudinal motion is the only degree of freedom allowed like in the conven-
tional BWO, where electrons propagate in a strong focusing magnetic field. In
the 3D case electron transverse motion is considered as well. This is the case

of the actual helix PASOTRON BWO device, where focusing magnetic field is
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absent. In this way, we can explore how the 3D motion can affect the temporal
behavior of the helix PASOTRON BWO.

This chapter is organized as follows: The equations of motion, and the en-
velope equation are presented in sections 5.2 and 5.3, respectively. The starting
oscillations parameters are discussed in section 5.5. The results and their discus-
sion are presented in section 5.6 in two subsections; one for the zero reflection
boundary conditions, and the other for the non-zero reflection case. Finally, the

conclusions are presented in section 5.7.

5.2 Equations of Motion

In the previous chapter, we used cylindrical coordinates to formulate the model
of the BWO tube, because of the cylindrical geometry of the problem. How-
ever, for that coordinate system, Lorentz equations of motion exhibit singularity
for particles passing close to the axis. To treat this problem when using this
coordinate system, the integration step was made very small, and the number
of beamlets in the radial distribution was changed to avoid those particles ap-
proaching the axis. This technique was employed for the steady operation for a
specific field at the entrance. However, for the time varying case, it is hard to
avoid particles hitting or approaching the axis, and we have to eliminate those
“bad” particles from the simulation, which introduces a small error in the results.
A good solution to this problem is to use new transverse coordinates, which can
be called complex coordinates (z+1iy). This allows us to preserve the cylindrical
nature of the problem while avoiding the axis singularity at the same time. The

equations of motion in these coordinates are formulated below.

o8



The Lorentz equations of motion in cartesian coordinates are given as,

%(ymyg) — g (&, +yB.Jc— B, /c) (5.1a)
%(ymy) =q(& +2B,/c—1B,/c), (5.1b)
%Wm@ = q(E. +iB,/c— B /c). (5-1c)

where £,, &,, &.and B,, By, B, arethe components of the instantaneous
electric and magnetic fields, respectively. The energy evolution equation in rect-

angular coordinates can also be written as,

d q . . .

The transformation of vector components from cartesian coordinates to cylin-
drical ones depends on vector position in the x — y plane. For a vector A with
polar position (r, ), this transformation is given by,

A, = A, cos) — Aysinb,
Ay = A, sin0 + Agcos,
Correspondingly, one can introduce complex combinations,
A, +iA, = (A, +iAp)e”, A, —iA, = (A, —iAy)e ™, (5.3)

which will be used later on. Introducing the new variable & = x + iy, we can
combine Eqgs. (5.1a, 5.1b) in terms of this new complex variable, by adding Eq.
(5.1a) and Eq. (5.1b) multiplied by i. Equations (5.1¢) and (5.2) can also be

written in terms of the complex variable &;;

%(’ymél) =q [(5; +i&) € —i(&1/c)B. +i(%/c) (B, + iBy) ew] . (54)
) = g (€ — Im{(E1/c) (B, — iBy) ™) (5.5
%7 - % [Re {g‘l (& — i&) e—ie} + z'gz] , (5.6)
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where in obtaining Egs. (5.4), (5.5) and (5.6), we used Egs. (5.3).

Now we represent the above equations as derivatives of z instead of ¢, since
the boundary conditions are given in terms of z (i.e. at z = 0 and z = L, where L
is the device length). The variable &; can be represented as £ = re?. For particle
angular position 6, at the entrance (at z = 0), we define & = e = red?,
where Af = 0 —0,. Thus, all particles have the same initial condition A6 = 0 at
z = 0, independent of their initial azimuthal positions 6,. (Later on, the initial
particle azimuthal angular position will be shown to be absorbed in the particle

phase definition.) So in terms of £ the above equations can be written as,

%(Wmé) = g (& + &) e — i%BZ + 2% (B, +1iBy) eiA"] : (5.7)
i( mz) =1 |¢€ —Im{§(B — iBy) e 2%} (5.8)
dZ Y P z c r 0 s .
d __ 4 : : —iA .
dz| T mez [Re {5 (Er—ib)e } * 252] ' (5.9)

The above equations are solved for transverse initial conditions, £|.—o = ro, Af|.—o =
arg&l,—o = 0, f |.=0 = 0. The complex variable £ has a magnitude equal to the
particle radial position r, and phase equal to the particle rotation angle relative
to its initial polar angle at the entrance. The last boundary condition (5 l.=0 =0)
implies an initially linear electron beam.

The fields of the harmonic interacting with the electron beam have the phasor
representation given in section 3.4 and Appendix B. For convenience we write

this representation again,

E = —iE{er + Egeg + Efez,
B= B,fer — iBgeg — iéfez,
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The instantaneous fields of this synchronous harmonic are given as,
E = Re{e(z, t)]:j(r)ei(kz*”t*())}, and B = Re{e(z, t)B(r)ei(’fZ*wt%)}’

where the function €(z,t) describes the wave envelope as a function of longi-
tudinal distance z and time t. Defining ¢ = kz — wt — 0y, the fields can be
written as £ = Re{e(z, t)B(r)e®=29} and B = Re{e(z, t)B(r)e’@=29}. When
we use the following normalizations: § = k€, 2 = z/L, pe = y€Jc, &=

eLe/mc?, k= kL, = kL, @ = wL/c (where L is the device length), the

X

equations of motion become,

d . R i(p— i
Epg = — [(Ef/ﬂz — Bg) Im{é(z,t)e (¥ A0)}6 Ad

+i (B{ /8. + B ) Re{e(z, )"0 )i — i%BfIm{é(z, t)ein)] ,

(5.10)

)= —Re {ﬁg (Ef]m {e(z, t)ei(w_M)} —iEJ Re {e(z, t)ev=Aa9) }> e_iM}
z

J7B. — B! Re {&(z, 1)/ ~20Y 1 (5.11)

d. Fpe

FEAROR (5.12)
d -
v =k-a/B. (5.13)

B. = /1 — (L+ 52 /2.
where EY, Eg , B, BS, Bg , and BJ are real functions of the normalized radial
positions p = kr = |é |; see section 3.4 and Appendix B. In this model, we con-
sider particles to be initially distributed over py = &y, and 1, such that we have
constant current density across the beam and uniform phase distribution over

1. We absorbed the particle angular position at the entrance in the ¢ definition.
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This way, we consider only radial and -phase distribution of particles without
considering their angular distribution (distribution with 6,), which significantly

reduces the number of particles encountered in the simulation.

5.3 Wave Envelope Equation

Similar to the equations of motion, the wave envelope equation for the BWO
can be written in terms of the new complex coordinates as,

0é(zZ,7) 0€(z,7)

or 0z

O ([i (el — Ef) + pe(B] + Bf)e®) 218, + B ) (5.14)

where 7 is the normalized time (7 = tv,/L), and the constant C is given by

O k% Zipi 1y ) (mc? )
|E.(Ry)[?

The variable Z;,; is the interaction impedance calculated by using the code

CHRISTINE [32], [, is the beam current injected, and |Ez(Rb)| is the normalized

axial electric field amplitude of the first spatial harmonic evaluated at r = R,,.
The forward wave is assumed to be non interacting with the electron beam

synchronously, so the forward wave envelope equation is,

8€f(2, T) 4 8€f(2,7')
or 0z

= 0. (5.15)

The reflection of the backward wave occurs at z = 0 to give the forward wave,
which in turn reflects at the device end z = L. The boundary conditions at these

both ends can be combined [31] as,

€f|sm0 = —€|sz0, €rmp = _Re_QikL€f|z:La
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where R = R1R,, R; and Ry are the reflection coefficient at z = 0 and z = L,
respectively. Thus, we reduce the number of parameters to characterize the

device to one R, instead of two.

5.4 PASOTRON BWO Model

The time dependent model of the PASOTRON BWO is based on integration of
the equations of motions Egs. (5.10), (5.11), (5.12), and (5.13); and the wave
equations Egs. (5.14), and (5.15) over a grid in 7 — Z plane. In solving these
equations we assume that a particle experiences a stationary field during its
lifetime inside the device. Thus, the time variation of é(Z, 7) is neglected during

the particle motion inside the tube. This assumption can be formulated as,

Be(z, )
ot

Je(z, t)‘ <77

where T' &~ L/v,q is the time a particle, which entered with initial velocity v,
spends inside the device before exiting at z = L (For 3D motion, particles may
be intercepted by the helix outer tube. This makes the travel distance of the
particle smaller than L.). Using this assumption, the wave envelop profile €(Z, 7)
at time instant 7 is used in integrating the equations of motion, where particles’
positions and momenta are obtained over the grid axial points, all at the same
time 7. These particles” positions and momenta in their turn are used to get
the source term in the envelope equation, where this equation together with the
equation for the forward wave and the boundary conditions are used to calculate
the fields at the next time step 7 + A7. This assumption imposes limitations
on the validity of the results. Only results with single frequency output or non

stationary shallow level modulation can be considered as valid.
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The model should have some means to calculate the frequency of operation.
The device frequency is made dynamically changing, with the initial frequency
corresponding to the resonance intersection of the beam line, w = kv,g, with the
backward wave dispersion line. (Of course, this dynamic has a temporal scale
much larger than the wave period 27/w.) The model given by the equations of
motion together with the envelope equation is invariant to the shift of frequency
[31], by Aw, which corresponds to shift of axial wavenumber by Ak = Aw/v, =
—Aw/|v,|. So, we define the new phase variable as ¢’ = ¢ + Akz — Awt, where
the new frequency and axial wavenumbers are, respectively, given by w’ = w+Aw

i(Awt—Akz)

and k' = k + Ak. Also, the new envelopes become ¢ = ¢e and €} =

i(Awt+Akz) - Thus, new equations are the same after replacing w, k, 1, €, and

€re
€ by W', K, ¢, €, and €, respectively. The frequency shift at each time step is
obtained from the time variation of the forward wave envelop €f(z,t), assuming
er(2,t) = |es(z,1)] €D, Then, the frequency shift Aw can be determined as
[31],

— [l Ret 51/ [ leg(z 0

Here, accounting for the forward envelope Eq. (5.15), one can write,

/|ef 2, 1) Re{ }dz* /Im{e}(z,t)%}dz

= —|Ug|/]m{ef 8Ef( )}dz

where we used Eq. (5.15). So the frequency shift can be given by,

86]6(2

Aw = |vg|/Im{e’}(z,t)T’t)}dz//|ef(z,t)|2dz
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5.5 Starting Oscillation Parameters

One of the important quantities for BWO characterization is the starting oscil-
lation current. This is the minimum current required to begin oscillation. The
starting oscillation current and frequency for BWO with end reflections was cal-
culated by Johnson [30] using Pierce circuit model. The results were presented
in terms of device normalized length. The same starting oscillation current was
obtained using the RF field approach in Refs. [42] and [31], for zero and non-zero
reflections, respectively. Another numerical method was proposed in Ref. [43]
to calculate the starting current.

In all these calculations, it is assumed that the device starts to oscillate
at a single frequency. We will use the same approach presented in Ref. [42] to
calculate the starting current for the 1D BWO with end reflections. That method
becomes so complicated when we try to apply for the 3D case. So the starting
current for the PASOTRON BWO is calculated using the approach presented in

Ref. [43].

5.5.1 One Dimensional BWO

The starting current for 1D BWO can be obtained by solving the linearized equa-
tions of motion together with the wave envelope equation [42]. The linearization

is made in terms of the variables 1, 5 and F, defined by,
¢:¢0+AE+,€Ea 7:70—’_5/’ F:€eiAza

where A = k — @/f,9, and the ’0’ subscript represents the quantity at the

entrance to the BWO. So in linearized equations in terms of these new variables
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are

dy _ w3
— = 5.16
N (-100)
Zi = —E! (kro) Re{Fe'n} (5.16h)
z
dF -
; _ - f —itbo
iAF ' iC <EZ (kro)te > . (5.16¢)

Now, we write the two equations of motions Eqgs. (5.16a), and (5.16b) in terms
of averaged variables @av and 7,,, where the averaging is over the entrance phase

1o and entrance radius ry. These averages are given by,
Q/Nch - <1;ZE£(KTO)6M)O> ) rs/zw - <;5/E£<I€T0)eiw0> :

So the linearized equations in terms of these averaged variables are given by,

oy _ Py
= ) d
A -4
d~av rb
;7 :—F/ (BT (ko) 2rodro /Ty, (5.17b)
< 0
dF ~
IAF = % = —iCl, (5.17¢)

These equation can be simplified (to the minimum number of parameters) [42],
using the following new variable X, Y, and Z, defined by,

w

Z=Dz X=— A
Y3 B3D

Y = (D/C)F,

Where D is the normalized device length, which is given by,

_ rb 1/3
D= (ﬂ / [Ef(nro)}2rodr0/rbz) .
0

%055
In term of the new variables, Eqs. (5.17) become,

da,
- X
iz~

(5.18a)
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X

— =Y, .18b
dz / (5-18)

dy ~
IA'Y — 7= —it)ay, Where, A"= A/D. (5.18c¢)

These equations are linear homogeneous system of differential equations, which

has the characteristic polynomial,
N(A = N) =4,

For each value of A’ there are three solutions, A, A2, and A3, for that polynomial.

Thus the solutions for these differential equations are,

Vap = 1€M? + ™7 + aze™?, (5.19a)
X = OélAle)\lZ -+ 062)\26)\22 + &3)\3€>\3Z, (519b)
Y = —aiMeM? — ap\det? — az)let, (5.19¢)

This solution should also satisfy the boundary conditions:
Yaolz=0 =0, X|z20=0, Y(D)= Re 2 2y (0). (5.20)

Solving Egs (5.19, 5.20) for oy, as and as, we get the different modes for the
linearized BWO. There are specific values for variable pair A’ and D, for which
there exist a non trivial solution of these equations. The mode with lowest
possible D o I'/3, represent the starting oscillation variable Dy, and the cor-
responding current and frequency are the starting oscillation parameters of the
device. For zero reflection case, these equations are simply those described in
Ref. [42], which gives Dy = 1.974.

We used this linear model to calculate the starting oscillation current and

frequency for the non-zero reflection case. As we are interested in studying the
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effect of changing the reflection phase on the operation of the BWO, we plot the
calculated staring oscillation current and frequency versus the reflection phase
in Fig. 5.1. The starting current curves is used to bound the region of oscillation
of the BWO in Fig. 5.9(a), where obtaining this information from solving the
nonlinear device equations is impractical as it requires long simulation time as

the current is reduced.

5.5.2 Three Dimensional BWO (helix PASOTRON BWO)

Linearizing the equations for the 3D BWO to get the starting oscillation pa-
rameters is very complicated. A simple way, based on solving the nonlinear
device equations was presented in Ref. [43]. That method is based on comput-
ing the growth envelope growth rates d; and d,, for two small currents, /; and

I, respectively. The starting current I, is determined through the relation [43],

(51/52)[2 - Il
[, =12 - 21
o 01/0, — 1 (5:21)

So, numerically solving equations of motion Egs. (5.10), (5.11), (5.12), and
(5.11); and the envelope equations Eqs. (5.14) and (5.15) together with the
boundary conditions, we get the temporal exponential growth of envelope before
saturation. This growth rates is calculated for two different small currents, and
the starting oscillation current is computed using Eq. (5.21). This starting
current is plotted as the thick boundary boundary in Fig. 5.9(b). This method
was applied only in the regions of reflection phase where the oscillations starts
with a single frequency and saturates at a stationary single frequency waveform.
For some regions of the reflection phases, there was no single frequency output;

the device exhibits automodulation when it starts to oscillate. So, it was not
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Figure 5.1: Starting oscillation current and frequency for the first two modes for
1D BWO. The BWO beam parameters used are 40 keV beam energy and 1.5
cm radius. The SWS is the helix loaded circular waveguide with R, = 2.5 cm,
Ap = 2.28 cm, and R. = 5 cm.
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possible to apply that method for some ranges of reflection phase, see Fig. 5.9(b).

5.6 Numerical Results

The results obtained in this section were calculated for the typical beam param-
eters used in the University of Maryland PASOTRON BWO experiment [27].
The electron beam is assumed to be solid with uniform current density and 1.5
cm initial beam radius. The beam energy is 40 keV. The SWS helix parameters
are as follows. The helix radius is 2.5 cm and is loaded inside a conducting
cylinder of radius 5 cm. The helix pitch period is 2.28 cm.

The study is made for two kinds of boundary conditions. The first boundary
condition is the zero reflection coefficient, with no feedback loop between the
forward and backward waves. So, the only feedback loop is formed by the elec-
tron moving forward and the wave propagating backward. The second boundary
condition is the strong reflection case |R| = 0.80, where the excitation of cavity
resonant modes should be the dominant effect. The reflection coefficient magni-

tude for the latter case corresponds approximately to the measured cold cavity

quality factor of 400 [27, 26]; see section 4.3 and Eq. (4.17).

5.6.1 Zero Reflection Coefficient

Zero reflection coefficient cuts the feedback loop between the forward and the
backward waves in the BWO. However, there is an internal loop formed by the
electron beam and the backward wave [2]. The typical device behavior for this
case is shown in Figs. 5.2 for the 1D case and in Figs. 5.3 for the 3D case. In

both cases, the device reaches a steady stationary state with single frequency
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output. The transverse motion in the 3D case results in a higher efficiency (about
24.5%) compared to 10.28% for the 1D case.

Device stationary output depends on the beam current. The efficiency and
frequency dependences on the beam current are shown in Figs. 5.4 and 5.5 for the
1D and 3D cases, respectively. For the 1D case, auto-modulation occurs when
current exceeds 80 amps, while the start current is about 14 amps. This cur-
rent (80 amp) approximately corresponds to the maximum achievable efficiency
which is about 11%, see Figs. 5.4. As is shown in Fig. 5.5, device efficiency
is higher (up to more than 30%)in the 3D case. Here, auto-modulation is not
observed even at very large currents. The disappearance of auto-modulation can
be attributed to electron interception by the device outer conducting tube. The
electron interception reduces the effective length over which electrons interact
with the wave. That effective length gets shorter as the injected beam current
is increased. Thus, auto-modulation is avoided at larger currents. Shortening
of the electron effective length with the increase in the beam current is shown
in Fig. 5.6, where it is shown that for 120 Amp. current the electron beam is
intercepted after shorter travel distance than the 40 Amp. beam current case.

The occurrence of auto-modulation in a 1D model of the BWO without re-
flection is due to electrons over-bunching in the strong field, i.e. the amplitude
nonlinearity of the system was studied in for the 1D case without reflection by
Ginzburg [42]. This mechanism is called the amplitude mechanism [44]. For a
3D BWO, when electrons give their energy to the wave, they become bunched
90° out of phase with the interacting longitudinal field. So the radial field which
is 90° out of phase with the longitudinal electric field, pulls these electrons to-

wards the outer conducting tube, as discussed in section 4.3. Thus, electron
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current is 40 Amps.

72



0.4

0.35f

o
w
T

o

S

a
T

Normalized amplitude
o
= o
(6] N
T T

©
[EY
T

0.05f

0 | | | | | |
6. . 8 10 12 14
Normalized time r=vgt/L

1.36

1.34

=
w
N

Frequency [GHz]
=
w

1.28

1.26

1-24 1 1 1 1 1 1
0 6. .8 10 12 14

Normalized time r=vgt/L

Figure 5.3: Normalized amplitude |é| and frequency versus the normalized time

for 3D interaction. The beam radius is 1.5 cm, beam voltage is 40 kV, and

current is 40 Amps.

73



bunches are intercepted by the outer tube without performing oscillations. This

explains the disappearance of auto-modulation in an over-bunching regime in

the 3D BWO.

5.6.2 Non-zero reflection

Non-zero reflection coefficient provides a closed loop feedback between the for-
ward and the backward wave, which forms an electromagnetic cavity. It is not
easy to determine exactly the reflection coefficient in BWO devices. However,
the amplitude of the reflection coefficient can be estimated from the experimen-
tally measured cavity quality factor; see Eq. 4.17. For the helix PASOTRON
BWO the reflection coefficient amplitude was estimated to be 0.8 [27, 26].

In the case of non-zero reflections the stationary output of the device becomes
sensitive to the phase of the reflection coefficient. The effect of the phase of
the reflection coefficient is shown in Figs 5.7 and 5.8, for 1D and 3D cases,
respectively. The beam current used in these two figures is 10 Amps. For the
1D device, the maximum efficiency is 17.4% for |R| = 0.8 compared with no
oscillation for the zero reflection coefficient case; see Fig. 5.4 where the starting
oscillation current is around 15 Amps. Asis shown in Fig. 5.7a, the device output
frequency closely follows the cold closed cavity resonance frequency shown by
dashed lines. There is an empty region in Fig. 5.7 between ¢, = 0.17 and
0.57, which corresponds to the non-stationary operation of the device. The
phase ¢, = 0.1 corresponds to total wave round trip inside the cavity with total
phase change ¢, — 2kL. = —21.977, which is close to the cold closed cavity
total phase change of —227, whereas at ¢, = 0.5 the phase change is ¢, —

2kL = —20.13m, which is close to —207 cold cavity value. The difference of
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Figure 5.4: Frequency and average efficiency versus the beam current for 1D
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maximum achievable efficiency for this case is about 11%.
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total phase change by about 27 indicates the transition between two successive
axial modes. The cold closed cavity resonance frequencies are represented by
the dashed lines in Fig. 5.7a. Similar figures for the 3D case are shown in Fig.
5.8. The single frequency operation region get shrunk for this case where the
non-stationary multi-frequency region extends between ¢, = 0.67 and 27. The
maximum efficiency for this case is slightly below 44% compared to 18.6% for
zero reflection coefficient.

The regions of stationary single frequency operation in the ¢, — I, plane is
shown in Figs 5.9, for the 1D and 3D cases, respectively. In these figures, at
each value of the current, we have a range of reflection phase ¢, over which we
can get a single stationary frequency operation. This range of phase shrinks as
we increase the current. Eventually, beyond a limiting current value, there is
no stationary operation of the device. For the 1D BWO, this limiting current
is about 19 Amp., and for 3D case, it is 15 Amp. (Compare this with the
zero reflection case). The region of the stationary operation for the 3D BWO
is smaller than their equivalence in the 1D case. The thick lines in Figs. 5.9
are the starting oscillation current calculated in section 5.5. As seen in Figs.
5.7 and 5.8, the output frequency and efficiency vary as we tune the reflection
phase ¢,. The reflection is always tuned in the experiment using a sliding short
at one termination; see Fig. 1.2. The range of efficiency and frequency tuning
as a function of beam current is shown in Figs. 5.10 and 5.11, for one and 3D
BWO respectively. From these figures it is evident that the frequency range
shifts down with the increase of beam current (This is referred to as frequency
pulling caused by beam effect.), accompanied by upshift in the efficiency range,

till reaching saturation. We can also get the maximum achievable efficiency

78



for 0.8 reflection coefficient magnitude, which is about 18% for the 1D BWO
compared with 45% for the 3D BWO.

5.7 Conclusion

A model describing non-stationary phenomena in 3D PASOTRON BWO with
end reflections has been developed and used for characterizing the operation of
the helix PASOTRON BWO. The results obtained have been compared with
the 1D BWO. This comparison helped understanding the effect of the electron
transverse motion. One observation in this study, which was also observed in the
steady state model presented in chapter 4 and in Ref. [26], is that the stationary,
single frequency operation of the 3D BWO is more than two times higher the 1D
BWO efficiency, when all other parameters are the same. Another observation
is that the efficiency enhancement is usually accompanied by a reduction in the
output frequency (frequency downshift) .

In agreement with Ref. [42], when the 1D-BWO operates without reflection
(R=0), auto-modulation appears at beam currents exceeding a certain value due
to electron overbunching. However, such an auto-modulation is not observed in
the 3D BWO model. This can be attributed to helix field configuration. The
synchronous electric field has a 90° phase shift between the longitudinal and
radial components. This results in a radial drift of electrons towards the outer
conductor whenever overbunching starts (losses synchronism with the longitudi-
nal component). Thus, electrons are intercepted by the outer conducting tube
without performing oscillations in the overbunching regime.

In the presence of strong reflections, the high quality factor of the cavity

79



1.34F

13

Frequency [GHz]

1.26

1.24
o]

0.5 . 1. 15
Reflection coefficient phase gor/n

(a)

18

17¢

16

Efficiency [%)]

0.5 . 1. 15
Reflection coefficient phase (pr/n

(b)

Figure 5.7: The frequency and output efficiency for the stationary mode for

1D helix BWO with reflection coefficient magnitude |R| =

current.

The empty region between ¢, = 0.17 and ¢, =

0.8, and 10 Amp.

0.5m, corresponds

to non-stationary multi-frequency operation region. The dashed lines in the

frequency plot are the simple resonance frequency for the closed cavity (|R|=1.0)

as a function of reflection phase.

80



1.34F T 1

1.321 T~y N

Frequency [GHz]
[
L W
T
!
I
Il

1.28 - i

1.26| ~o 1

1.24 ! L i
0

Efficiency [%]

0.5 . 1. 15
Reflection coefficient phase (pr/n

Figure 5.8: The frequency and output efficiency for the stationary mode for
3D helix PASOTRON BWO with reflection coefficient magnitude |R| = 0.8,
and 10 Amp. current. The empty region between ¢, = 0.67 and ¢, = 2.07,
corresponds to non-stationary multi-frequency operation region. The dashed
lines in the frequency plot are the simple resonance frequency for the closed

cavity (|R|=1.0) as a function of reflection phase.

81



1.8+ ™ i
e

1.6 %3 i

Lar tationary ]

120 scillations | |

Reflection Coefficient phase @ /21
(=
T

08r Auto.
06} 1
*
04} * 1
L
0.2F % i
% 10 15 20
Beam Current [Amp.]
(a) 1D BWO
2
1.8t :
16f 1

r

I
S
T

=
N
T

o
(o]
T

o
(=]
T

Reflection Coefficient phase @ /21
(=
T

I
~
T

20

Beam Current [Amp.]

(b) 3D PASOTRON BWO

Figure 5.9: Region shaded with vertical lines is the stationary single frequency
region in the I, — ¢, plane: The thick line are the starting oscillations currents
calculated in section 5.5. (The boundaries in (a) and (b) have accuracy limited

to the number of points in the I — ¢, plane considered in the simulation.)

82



1.36

1.35 4

1.34 4
* "

*

[N

w

w
L

1.32¢ 1

Frequency [GHZz]

1.31

& * % I
13 ]

18 T

14} 1

[Ey
o
T
*
L

[oe)
T
ok
L

Efficiency [%]

G L L
5 10 15 20
Beam Current [Amp.]

Figure 5.10: Frequency and efficiency tuning ranges for stationary single fre-

quency operation as a function of beam current for 1D BWO.

83



1351 b

Frequency [GHZz]
(=
w
Lol %
-
I

[y
XY =
© w
T
H——h—k
F—k—k
I

BERE

127 Il Il Il Il Il Il Il
2 4 6 8 10 12 14 16

Beam Current [Amp.]

N w w
o o al
T T T
I I I

Efficiency [%]

N
o
T
I

151 b

10 . . . . .
2 4 6 8 10 12 14 16

Beam Current [Amp.]

Figure 5.11: Frequency and efficiency tuning ranges for stationary single fre-

quency operation as a function of beam current for 3D BWO.

84



dominates the operation of the device. The frequency of operation is very close
to the closed cavity resonance frequency. The device becomes sensitive to the
reflection phase. As we change the reflection coefficient phase, we pass through
a transition region separating two different axial modes, where auto-modulation

characterize this transition region.
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Chapter 6

Summary

The dissertation discusses the theory of operation of plasma filled microwave
devices, called PASOTRON (Plasma-Assisted Slow-wave Oscillator). One of the
main features of these devices, is the absence of the guiding magnetic field. The
electron beam transportation in these devices is provided by plasma ions, which
compensate the repulsive self space charge forces of the beam. However beam
electrons experience transverse motion under the action of the three components
of the RF fields. This transverse motion is the major difference between these
plasma devices and the conventional O-type devices, where only longitudinal
motion of electrons is allowed.

The effect of this transverse motion on the operation the plasma filled tubes,
was studied in chapter 2, where the tube is used as a TW'T amplifier and as
a BWO oscillator. The SWS structure considered is a symmetrical corrugated
waveguide. This type of SWS has the maximum field intensity close to the SWS
corrugated wall. So, it is desired to keep the electron beam as close as possible
to the corrugated wall, in order to have strong interaction with the RF. Electron

transverse motion provides the required proximity as the electrons moves radially
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toward the corrugated wall. However, electron interception should be avoided
at this high field intensity area. The study presented in chapter 2 deals with the
tuning of the device, where a weak magnetic field can help to avoid interception,
while keeping the favorable radial motion. It was shown that for TWT device
this can increase the output power, whose main saturation cause is the electron
interception. For the BWO PASOTRON, it was shown that the device efficiency
can be enhanced, if it is long enough compared with the starting oscillation
length. However the device operation deteriorate with the addition of external
magnetic field, if it is slightly longer than the starting oscillation length.

The PASOTRON BWO at the university of Maryland, employs a helix loaded
circular waveguide as the SWS. The helix SWS has its fields intensity concen-
trated around the helix, while it is almost transparent to the electrons moving
transversely. This is advantageous, in terms of interaction, where electrons are
exposed to the high field around the SWS, without being intercepted. A sta-
tionary “amplifier” model is presented in chapter 4. A very high efficient helix
PASOTRON can be designed using that model. The model showed that elec-
trons initially injected close to the axis, are the most efficient in giving their
kinetic energy to the RF field. This can be explained by the field profile in the
structure along the radial direction, where electrons initially injected close to
the axis are bunched by a small field while their energy is extracted with high
field close to the helix radius. So, it was shown that reducing the beam radius
enhances the device electronic efficiency up to 55%. Another feature of the field
profile along the radial direction for the synchronous harmonic, is that the ra-
dial and axial field components are 90° out of phase. So when electron bunch

is decelerated by the axial field component, they lose synchronization with this
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component and become in phase with the radial one, which in turn expels the
bunch toward the outer wall. Thus, we get rid of electrons when they begin to
accelerate again. This mechanism is also a cause for efficiency enhancement of
helix PASOTRON BWO.

Temporal study for the helix PASOTRON BWO is made in chapter 5. In
that study, we compare the results for the 3D helix BWO with the 1D BWO.
The parameters for the 1D are the same as the 3D, except of we limit the motion
to be only longitudinal for the 1D case. The effect of reflections at the two device
ends is studied. Two cases are separately dealt with, the zero reflection and the
non-zero reflection. The results for each case is presented below.

For the zero reflection case, the 1D BWO begins to oscillate at a certain
current, which is the starting oscillation current. The output efficiency increases
and the frequency decreases, as we increase the beam current, until the device
exhibits automodulation, where there is no more single frequency output of the
BWO. Similar behavior was observed for the 3D BWO, but the output efficiency
was higher. However, no automodulation was observed no matter how large we
increase the beam current. This can be attributed to the 90° phase difference be-
tween the radial and longitudinal field components of the synchronous harmonic.
When the electron bunch interacting with the longitudinal components starts to
perform overbunching oscillations, they become in phase with radial field which
moves the electrons towards the outer tube for interception. So electrons die
without performing such oscillations.

For the non-zero reflection case, the device becomes sensitive to the phase of
reflection coefficient. For high quality cavity, the device operating frequency is

very close to the cold closed cavity. As we change the reflection phase, the fre-
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quency varies linearly until it reaches an automodulation region, characterizing
a transition to another axial mode. In that automodulation region, two axial
modes coexist. The regions of single frequency operation of the BWO in the pa-
rameter space formed by the beam current and reflection phase, were obtained.
This region is smaller for the 3D BWO than the 1D BWO. The output of the
BWO changes with the reflection phase. For each beam current value there is
a range of frequency and efficiency of the device; each frequency and efficiency
corresponds to a certain reflection phase. The range of efficiency is shifted up
and the range of frequency is shifted down, as we increase the beam current.
The output efficiencies were higher and the frequencies were lower for the 3D

BWO than their values for the 1D BWO.
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Appendix A

Derivation of the Envelope Evolution

Equation

In this appendix the wave envelope evolution equation is derived from the Poynt-

ing theory. The Poynting theory can be written as,

V- -8(x,t)+ %w(x, t)=-TJ(x,t) - En(x, 1),

The quantities S(x,t), w(x,t), J(x,t), and €, (x,t) are the instantaneous
Poynting vector, energy density, beam current density, and total electric field.
The instantaneous current density J (x,t) can be represented for the single fre-
quency as,
t

T(x,t) = Re{J(x,t)e ™}, J(x,t) = ; /t » J(x,7)e“Tdr (A1)
where J(x,t) is a slowly time varying current phasor. Similarly the instan-
taneous fields can be written as €, = Re{e(z,t)E,,,(x)e”™!}, and By =

Re{e(z,1)B,,,(x)}e™™'}, where €(z,t) describes the envelope of the wave. So
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the instantaneous Poynting vector and energy density can be written as,

1 )
S(X, t) = Eﬁ (EQ(Z, t)Etot X Htot672zwt + |€(Z, t)|2Et0t X H:ot + C.C.)
1 1 —2iw
w(X7 t) = ZE [52(2, t) (Etot “Eiot + Biot - Btot) e 2! (A-Q)

The divergence for |e(z,t)]? (Ew x H,, + Ef, X Hyp) term is given as,

V- le(z, 1) (B x Hy,, + By X Hygy) =

Oe(z,t) . . .
6*(2:, t) ((92 )ez . (Etot X Htot + Etot X Htot) + c.c.

where E;,; and H,,; are the field solution inside the structure in the absence of
the beam, with V - (Ey: x Hf, + E}, x Hy) = 0.
Substituting in the Poynting equation and averaging over time period 27 /w,

and the cross section S,

1, Oe(z,t) ¢ . « «
1 (z,t) 92 in /61 €. - (Broy x Hiy + By x Hyor) dS1+

1 Oe(z,t) 1
—€"(2,1) (2, )_/ (|Etot|2 + |Btot|2) dS, +c.c.
Si

4 ot 4w

1
= —Ze*(z, t)/ (J- E:ym) dS| +c.c., (A.3)
Sy

where Ef . is the synchronous spatial harmonic in the Floquet series expansion.

For Eq. (A.3) to be satisfied for any €(z,t), we get,

de(z. t
ez, )4i / 8, (e x HY, + B x Hyy) dS)+
Sy

YIS
Oe(z,t) 1 .
50 E/SL (|Esot|” + |Biot|?) dsiz—/& (J-Esync) dS,. (A.4)

In another form,

Oe(z,t) 1 Oe(z,t) 1 .
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where Esync is the synchronous spatial component of the Floquet expansion of
Etot with the axial electron motion. The synchronous spatial harmonic has an

axial wavenumber k. In Eq. (A.5) N and the group velocity v, are,

N = i /é-z . (E:(ot X Btot + Etot X B;fkot) dS’

47
2
) as.

N 2
Ug—47rN//<‘Etot

Using the expression for J in Eq. (A.1), we get the envelope equation,

+ ‘Btot

Oe(z,t) 1 66(2 t) // e
0z T (" v sync ) j(X, Z, 7')6 dSJ_dT,
(A.6)

i(kz—wt) ]

where the synchronous field is given by, Egy,. = Esynce The instanta-

neous current density J cab be represented by,
T =Y qvid(z — 2 ()5 (x — x;(7)).
J

Performing the integration in Eq. (A.6), we get,

Oe(z,t) 1 0e(z,t)  wq Vi e i
82 + Ug 8t - N sz- ’ Esync(TJ70)e . (A7)

For the helix SWS, it is possible to absorb the 6 dependence of the synchronous
harmonic in the phase ¥ = kz — wt — 6.

The summation in the above equation is over all the particle that reach the
position z between the time instant ¢t — 27 /w and ¢. The number of particles that

enter during this time period is I(27/w)/e,(¢ = —e). So, Eq. (A.7) simplifies to,

Oe(z,t) 1 0e(zt) 21 i
’ - ’ E* . 0. i1
0z * v, Ot N UZJ sym(m’ bi)e ’

where the angle brackets represents averaging over both particles entrance phases

(¢],=0) and radii (r;|,—0). The quantity NN, which is proportional to the power
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flow P, (P, = |N|/4), can be substituted with an expression containing the

interaction impedance Z;,;, which is defined as,

2

‘ Ez,,sync(Rb)
2k2P, ’

Zint -

For the TWT, the RF power flow and the group velocity are in the same
direction as the electron beam. The RF power P, = N/4 and group velocity

vy = |v,y| result in the following equation for the envelope evolution,

|Baa(Ry)

B (. 0)e ) A
lvg| Ot - 0z amelT3>05)€ > (A.8)

Vs

1 Oe(z,t)  Oe(z,t) k3 Zint T <v]~
- ‘2 Yi

For the BWO, the RF power flow and the group velocity are in opposite
direction to the electron beam flow. The RF power P, = —N/4 and group
velocity v, = —|v,| result in the following equation for the envelope evolution,

1 . 2Zz'n I - - i
ﬁagg JNCICUNR <& . E;ym(rj,ej)e—m>. (A.9)
Yg & )Ezl(Rb) ’ T

J
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Appendix B

First Harmonic Fields of Helix

PASOTRON Tube

In Chapter 3, we applied the fields boundary conditions at the helix, to get the
normalized fields for the n** harmonic for the circular waveguide loaded with a
tape helix. In this appendix we present the full expression of the first harmonic
fields, which is the important harmonic to study the operation of BWO helix
PASOTRON.

The normalized electric And magnetic field, denoted as E(p, 0, z;t) and B(p, 0,z;t),

respectively, for the first harmonic can be written as,

A

E(p.0,21t) = (—iE{(p)ér + El(p)ég + E'Zf(p)éz> gilki=wt=0)

A

B(p/ 97 23 t) = <_2BZ(p)ér + Bg(p)ée + Bzf(p)éz> ei(lﬁz—wt—e),

where kp is the axial wavenumber for the first harmonic (ky = k + 27/Ap),
the radial dimension r is normalized to p = kr, and k is the absolute value of
the transverse wavenumber for the first harmonic (k? = k% — w?/c?). The full

expressions for the functions Ef(p), E}(p), Ef(p), Bf(p), B](p), and Bf(p) are
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Ef(p) = L(p), for 0 < p<n,

B0 = W) e O —hOFm SPSC
o b LQOKOLM - LOK 1 L)
B e) = 3 b0 m RO ) = 1(0) RKa(n) hg — ngPtand p
for 0 < p <.
b K(OL) — LOK) | nkin)
L) = S h ) g (O —hOK <>*hg i

L(Q Ko KO Kio)

7O KOt L)) —~ T1SP=G
iy —hili(p)  Ki(QL(n) — L(OKI(n) Li({) n )
o) = T T R(Ohm) = L) Ka(n) T1(C) hy — ngPtang )

for 0 < p <n,
oy —ho Ki(Qh(p)/p—L(QKi(p)/p  nli(n)
o) = b ) e O h ) — MO Fa(n) by — ngPtand
1(0) KU(QOT(p) - LOKp)
O K OLn —LOKm | TTEPsG
; [KUQLm) = TOKI LQ) 1 1(p)
br [m(oh(n)—h(om(n)l<<>hg T A ]
for0<p<n
o [ phIin) L) KAL) — THOK()
» = Ry = ngtand T1(0) KO (m) = h(ORa(n)
L K(OLp)e - hOK@]
T T O LM = LK) forn<p=¢
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(B.1b)
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(B.3b)

. (B.4a)
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s [ KO () — (O Ki(n) L(S) nh Lip) | 1,
B = [Kl(oll<77) — Ii(C)K1(n) 11(¢) hg — ng*tang p + gll('o) )

for 0 <p<mn. (B.5a)

gf:[ ohiin) 1O K ta)lo =~ L0
o hg—ng2tan¢f’(6) Ki(¢O)Ii(n) — L(¢)Ki(n)

L KORE - LOKE]

O Onm SRR ()T N SPsC (B
. KAL) - LOKMLQ)  ah(p) N )
B = R Ohm) — hORm) Lo b= ngtang 0 SPSn (B
S ah) RO KOLR) - LOKE
B = R gt O ROL ) —hORKa) TSP se (B

1
where n =1, ( = (1, h =k /(w/c) and g = r/(w/c).
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