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Studying the nonlinear aspects and chaotic dynamics of lasers, as well as other

systems of scientific and technological interest, allows us to understand the possible

advantages they offer and the limits they impose. Of particular interest are the

often subtle relationships and synchronous states of coupled chaotic optical systems.

This dissertation is the culmination of investigations of nonlinear dynamics and

synchronization, and their underlying physical mechanisms, in two solid state laser

systems: Nd3+:YAG laser arrays and injected Erbium Doped Fiber Ring Lasers

(EDFRL).

Synchronization and chaos are studied in a three element, nearest neighbor

coupled Nd3+:YAG laser array. Identical synchronization is found only between

the outer lasers of the array, with no clear relationship to the central laser which

mediates the interaction. This synchronous state is stable irrespective of the level

of external modulation, and is reproduced in numerical simulations. Analysis of



a simple model explains these results and predicts the observed anti-phase locked

state of the Nd3+:YAG laser array and the embedding dimension of its dynamics.

More refined analysis utilizing the concept of phase synchronization is required

to uncover the relationship of the central and outer lasers. Frequency filtered phase

variables are computed from the array’s intensity time series. The frequency resolu-

tion provided by the phase definition permits the identification of frequency regimes

and ratios of phase synchronization.

Giant intensity bursts, with a broad distribution of burst times and amplitudes,

are induced in erbium doped fiber ring lasers by weak matched optical injection. This

is in sharp contrast to the usual stabilizing effect of tuned injection. Time resolved

heterodyne experiments reveal that the EDFRL modes wander over a range of MHz,

leading to intermittent interactions with the injected optical signal, and the observed

intensity bursts. A phenomenological model of the injected laser system qualitatively

and quantitatively reproduces the bursting dynamics and their observed statistics.

Modulating the injection signal with unbiased noise induces burst synchro-

nization of two matched EDFRLs with common injection. Analysis algorithms are

developed to study the burst dynamics while neglecting their component fast fluc-

tuations. Quantitative analysis shows a sharp transition to the synchronized state

with increasing modulation.
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5.2.1 Phase Synchronization of Rössler Attractors . . . . . . . . . . 83

5.2.2 Definition of Phase from Array Intensities . . . . . . . . . . . 85

5.2.3 Phase Synchronization of a Three Laser Array . . . . . . . . . 89

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Injection Induced Bursting in an Erbium-Doped

Fiber Ring Laser 100

6.1 Injected Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Injected EDFRL Bursting Dynamics . . . . . . . . . . . . . . . . . . 105

6.3 Origins of Bursting Dynamics . . . . . . . . . . . . . . . . . . . . . . 111

6.4 Injected EDFRL Model . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.5 Statistical Comparison of Experiment

and Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7 Noise-Induced Burst Synchronization 132

7.1 Noise-Induced Synchronization . . . . . . . . . . . . . . . . . . . . . . 132

7.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.3 Noise-Induced Burst Synchronization . . . . . . . . . . . . . . . . . . 136

7.4 Definition and Application of a Burst

Envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.4.1 Intermittent Phase Synchronization . . . . . . . . . . . . . . . 141

7.5 Quantifying Burst Synchronization . . . . . . . . . . . . . . . . . . . 145

vi



7.5.1 Defining a Synchronization Measure . . . . . . . . . . . . . . . 145

7.5.2 Injection Power . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.5.3 Synchronization with Modulation Strength . . . . . . . . . . . 147

7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8 Conclusions and Future Research 149

8.1 Synchronization of a Linear Nd:YAG Three Laser Array . . . . . . . 150

8.2 Phase Synchronization Entrainment of a Nd:YAG Three Laser Array 151

8.3 Injection Induced Bursting in an Erbium-Doped Fiber Ring Laser . . 152

8.4 Noise Induced Burst Synchronization in

Erbium-Doped Fiber Ring Lasers . . . . . . . . . . . . . . . . . . . . 153

8.5 Continuing and Future Research . . . . . . . . . . . . . . . . . . . . . 154

8.5.1 EDFRL Mode Dynamics . . . . . . . . . . . . . . . . . . . . . 154

8.5.2 Identifying the Mechanism of Noise Induced Burst Synchro-

nization in EDFRLs . . . . . . . . . . . . . . . . . . . . . . . 155

8.5.3 EDFRLs With Variable Coupling . . . . . . . . . . . . . . . . 156

Bibliography 159

vii



LIST OF FIGURES

2.1 The chaotic time series y(t) (left) and the strange attractor (right)

resulting from the numerical integration of the Lorenz equations,

Eqn. (2.1) with the parameter values σ = 10, b = 8
3 , and r = 28.

[2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 The sensitivity to initial conditions is observed by following two iden-

tical systems with slightly different initial conditions as they diverge

in time (left plot). The exponential growth of δ(t) is described by

the Lyapunov exponent λ, and saturates at a value equivalent to the

dimension of the attractor (right plot). [2] . . . . . . . . . . . . . . . 7

2.3 Period doubling cascade of the Rössler system Eqn. (2.3) to chaos
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Chapter 1

Introduction

1.1 Nonlinear Dynamics, Lasers and

Synchronization

The common practice of viewing systems of scientific and technological interest as

linear and well behaved while avoiding nonlinear regimes allows for easy analysis

and application. However, most systems in physics, chemistry, communications,

biology and many other disciplines are inherently nonlinear. In fact, classifying

nonlinear dynamics as a subfield of science has been likened to classifying the study

of non-elephant animals as a subfield of zoology. Studying the nonlinear aspects

of lasers, as well as other systems of scientific interest, allows us to understand the

possible advantages they offer and the limits they impose. If we do not pursue

this understanding we are confining ourselves to a narrow view of the universe with

similarly limited possibilities.
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A traditional, colloquial interpretation relates chaos to random systems with-

out any aspect of order. However, chaos as studied in physics, math and other

disciplines describes deterministic systems that display aperiodic dynamics and a

sensitivity to initial conditions and perturbations. So, there is order in chaos, it is

just very subtle. Often, understandin the dynamics of a chaotic system is only pos-

sible using sophisticated analytic methods. Excellent texts on chaos and nonlinear

dynamics include Refs. [1, 2], and various tools for studying chaotic time series are

discussed in Refs. [3, 4].

Lasers are particularly rich dynamic systems that, in the proper parameter

regimes, display chaotic dynamics. Since their first description in 1958 by Schawlow

and Townes [5], and Maiman’s demonstration of the ruby laser in 1960 [6] lasers have

garnered significant attention thanks to their many scientific and technological ap-

plications . Studying laser dynamics is one avenue to gaining a better understanding

of the fundamental physics behind lasers, as well as interactions of electromagnetic

fields, and the interaction of light and matter. Useful texts on optical and laser

systems include Refs. [7, 8, 9, 10]. Nonlinear dynamics in optical systems are ad-

dressed in Refs. [11, 12, 13]. In addition, studying chaos in lasers systems allows

us to address, by analogy, the behavior of other complex dynamic systems which

may not be experimentally accessible. Beyond determining the boundaries of chaos

in laser systems so as to avoid the chaotic regions in linear applications, a deeper

understanding of the laser systems allows for the development of applications that

depend on the nonlinear nature of the system. An example is using the chaotic

fluctuations of an erbium doped fiber ring laser to mask messages [14].

Using chaos to transmit information requires the synchronization of chaotic

systems. Synchronization is a fundamental aspect of many systems of technological

and scientific interest such as neural networks, chemical oscillators, computer and

communication networks, astronomical phenomena, and of course lasers. Synchro-

nization of chaos is a surprising, counterintuitive result due the parameter sensitive

and aperiodic nature of chaos. Like chaos itself, synchronization of chaotic systems

is often rather subtle and may manifest itself in various weak forms beyond the fa-

2



miliar identical synchronization. A review of chaotic synchronization is supplied by

Refs. [15, 16]. Identifying synchronization in chaotic systems often requires sophis-

ticated detection algorithms. The development and application of such algorithms

and synchronization measures is a central aspect of this dissertation.

1.2 Dissertation Organization

This dissertation, made possible by the efforts of many talented researchers and

collaborators, details experiments designed to study the nonlinear dynamics and

synchronization properties of laser systems. During the course of this research,

several surprising dynamical and synchronization regimes were discovered. Using

the analytic tools mentioned above, including those developed as a part of this

research, we investigate dynamic transitions in, and relationships between chaotic

lasers. In this fashion, we were able to uncover dynamical relationships previously

experimentally unavailable. While this dissertation is primarily experimental, the

physical mechanisms responsible for the dynamics and relationships observed are

investigated analytically and numerically, as well as experimentally.

The following two chapters provide introductions to chaotic dynamics and the

experimental systems used in this research. Chapter 2 provides an introduction to

chaos, including routes to chaos (Sec. 2.1.1) and the synchronization of chaotic dy-

namics (Sec. 2.2). Lasers and nonlinear dynamics in lasers are reviewed in Chapter

3. A basic derivation of the semiclassical Maxwell-Bloch equations is provided (Sec.

3.1), and their equivalence to the chaotic Lorenz system is noted (Sec. 3.2). The

Arecchi classification scheme, which categorizes laser systems by their dynamics, is

presented in Section 3.3. The laser systems studied are presented in Section 3.4,

neodymium doped yttrium aluminum garnet (Nd:YAG), and Section 3.5, erbium

doped fiber ring lasers (EDFRL).

Solid state laser arrays are introduced in the first section of Chapter 4. Study-

ing chaos in a three Nd:YAG laser array described in Section 4.2, we find a surprising
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synchronized state where the outer lasers of the array are identically matched and

have no clear relation to the central laser that mediates the interaction [17]. Analy-

sis of the laser model in Section 4.4 explains the stability of this synchronized state,

and numerical simulations of the model in Section 4.5 show strong agreement with

experimental observation.

Despite the strong agreement between experiment and theory, the dynamic

relationship between the side and central lasers is unclear. Only by studying the sys-

tem from the perspective of phase synchronization, a weak form of synchronization,

using frequency filtered phase definitions and synchronization measures developed

as part of this research, are we able to complete the picture of the relationships

between the laser array elements (Section 5.2) [18, 19].

The discovery of the surprising phenomena of giant bursting dynamics in-

duced by a weak, optical frequency-matched injection signal is presented in Chapter

6, Section 2 [20]. The physical origins of the bursting dynamics are investigated

experimentally, finding that the slow wandering of the ring laser modes leads to in-

termittent interaction with the injection laser and the observed bursting dynamics

(Section 6.3). A phenomenological model of the injected laser system is advanced

in Section 6.4, and is found to have excellent qualitative and statistical agreement

with the experimental dynamics in Section 6.5.

Noise induced burst synchronization in two matched EDFRLs with a common

optical injection signal is studied in Chapter 7 [21]. Using data analysis techniques

developed as part of this research, the bursting intensity time series is reduced to

symbolic dynamics, and a burst synchronization measure is proposed (Sections 7.4-

5). Studying burst synchronization as a function of modulation strength we find a

sharp transition to burst synchronization.

In Chapter 8 we review the experimental, numerical and analytic results of

this dissertation, identify open questions, and suggest numerical and experimental

studies to address these questions while continuing to advance our understanding of

the nonlinear properties, dynamics and synchronization of chaotic lasers.
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Chapter 2

Chaos and Synchronization

2.1 Chaos

The French mathematician Henri Poincaré is often referred to as the founder of the

study of chaotic dynamics. Following Newton, generations of mathematicians and

physicists had concentrated on using Newton’s laws of motion and the concept of

universal gravitation to analyze and predict individual orbits in an attempt to solve

the analytically intractable three body problem. At the end of the 19th century,

Poincaré broke away from this tradition and instead of trying to analyze and predict

specific orbits in the solar system, he asked the question of whether or not orbits are

necessarily stable. By taking a new approach and analyzing sets of possible initial

conditions for a planetary body in the solar system, and discovering the possibility

of complex, aperiodic orbits, Poincaré was the first to observe chaotic dynamics

[1, 2].

Chaotic dynamics arise from deterministic systems with aperiodic behavior
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Figure 2.1: The chaotic time series y(t) (left) and the strange attractor (right)
resulting from the numerical integration of the Lorenz equations, Eqn. (2.1) with
the parameter values σ = 10, b = 8

3 , and r = 28. [2]

that displays a sensitive dependence on initial conditions, exactly the situation that

Poincaré studied. In equally famous work, Lorenz studied a simplified model of

convection in the atmosphere in an attempt to understand and predict weather

patterns. He discovered instead the three dimensional system of equations

ẋ = σ(y − x),

ẏ = rx− y − xz, (2.1)

ż = xy − bz,

which displays chaotic dynamics, and confounded his hopes of improving weather

predictions [22, 2]. The Poincaré-Bendixson theorem states that three is the min-

imum requisite number of dimensions for a dynamic system to display chaotic dy-

namics [2]. In these equations the over-dot indicates differentiation with respect to

time, and σ, r, b > 0 are parameters. Choosing the values σ = 10, b = 8
3 , andr = 28

we observe aperiodic motion (left plot of Fig. 2.1), and the famous strange ‘butterfly’

attractor (right plot Fig. 2.1) [2].

Sensitivity to initial conditions is studied by examining trajectories with nearly

identical initial conditions, as Poincaré did. If there is some small deviation between
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Figure 2.2: The sensitivity to initial conditions is observed by following two iden-
tical systems with slightly different initial conditions as they diverge in time (left
plot). The exponential growth of δ(t) is described by the Lyapunov exponent λ, and
saturates at a value equivalent to the dimension of the attractor (right plot). [2]

initial conditions δo = x(o)−x′(0) for two identical systems, then in a chaotic system

the difference δ(t) between the two systems will grow in time. In Fig. 2.2, left figure,

we see how x(t) in two identical Lorenz systems diverges in time due to this initial

discrepancy. Here the initial difference was on the order of |δo | = 10−15. It is found

that the growth of δ(t) is exponential and we may characterize this growth with the

relation

|δ(t)| ∼ |δo|eλt, (2.2)

where λ is the Lyapunov exponent and has units of inverse time. Sensitivity to

initial conditions is quantified by the Lyapunov exponent [2, 1]. Plotting ln|δ| as a

function of time, we are able to see the exponential growth described by Eqn. (2.2),

which then saturates at a value of |δ| comparable to the size of the attractor, Fig. 2.2

right plot.

We shall continue encountering the Lorenz system throughout this dissertation,

as it displays many significant aspects of chaos and often serves as a test system for

new ideas. Another nonlinear system of equations that is widely studied in dynamics

literature, including this dissertation, is the Rössler system. While its inspiration

is perhaps more mundane than the systems studied by Poincaré and Lorenz – the

stretching and pulling executed by a taffy pulling machine at a candy store – the
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three dimensional Rössler system

ẋ = −y − z,

ẏ = x + ay, (2.3)

ż = b+ z(x − c),

it is perhaps more useful for this simplicity [23]. The only nonlinearity in the system

is from the zx term in the third differential equation, allowing for simpler, though

still chaotic, dynamics. Here a, b, and c are parameters.

2.1.1 Routes to Chaos

Initially stable systems enter chaotic regimes by various routes, such as series of

bifurcations [1, 2, 24], quasiperiodicity [1, 25], and intermittent dynamics [1, 26,

24, 27]. These paths to chaos are not necessarily independent or exclusive of one

another. The conditions in which chaos is possible and the routes to chaos are a

continuing area of investigation. References [1, 2, 24] review these studies.

A variety of bifurcations have been identified and studied in numerical and

experimental systems including Hopf, saddle-node, tangent, and pitchfork or period

doubling bifurcations. Here, a smooth shift in a parameter of the system under

investigation results in a sudden change in the dynamic nature of the system. The

parameter value of this dynamic shift is the bifurcation point. Series of bifurcations

may lead to the development of strange attractors and chaotic dynamics. Sometimes

a single bifurcation is enough to enter a chaotic regime when the bifurcation destroys

all of the stable orbits in a system, such as in the case of an inverse tangent or inverse

saddle-node bifurcation. [1, 24].

The period-doubling cascade route to chaos is particularly interesting exam-

ple due to the work of Feigenbaum [28, 29, 1, 2]. Investigating period doubling

bifurcations in the logistic map

xm+1 = rxm(1 − xm), (2.4)
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and the sine map

xm+1 = r sin(πxm), (2.5)

Feigenbaum noticed that both maps shared identical convergence rates of the bifur-

cation points and distances along x between the stable points. The relationships

defining this universality are

lim
n→∞

rn − rn−1

rn+1 − rn

= δ̂ = 4.6692..., (2.6)

describing the convergence rate of the bifurcation points rn, and the rescaling

lim
n→∞

dn

dn+1

= α̂ = −2.5029..., (2.7)

where dn describes the distance along x between stable points [2]. Hence, even

though the two maps are very different – the logistic map displays a quadratic

nonlinearity while the sine map is transcendental – they both follow the exact same

route to chaos! The mathematical constants δ̂ and α̂ are in fact intrinsic to the

period doubling route to chaos. Various experimental studies have measured values

of δ̂ which show reasonable agreement to Feigenbaum’s theory; Libchaber et al.

obtained δ̂ = 4.4±0.1 in a mercury convection experiment with four period doubling

bifurcations [30], and Arecchi and Lisi measured δ̂ = 4.7 ± 0.3 studying a nonlinear

transistor experiment with an equal number of bifurcations [31].

To better visualize the period doubling transition to chaos, we examine a

Rössler system, Eqn. (2.3) with a = b = 0.2 and allow c to act as the bifurcation

parameter, Fig. 2.3 [32]. When c = 2.5, the system trajectory is a simple closed

loop, projected onto the xy-plane. Period doubling bifurcations occur as c increases

to 3.5 and again on the path to c = 4 such that the system displays period 2 and 4

trajectories following the respective bifurcations. At c = 5 we observe the strange

attractor for a chaotic Rössler system [32]. Fig. 2.4 displays the bifurcation diagram

of this period doubling cascade. Each point represents a sampled local maximum of

x(t), so the speckle pattern indicates no stable maxima and a chaotic trajectory. It

is interesting to note that an expansion in the periodic window of the region about

c = 5.5 would reproduce the structure of the initial bifurcation cascade [32].
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Figure 2.3: Period doubling cascade of the Rössler system Eqn. (2.3) to chaos with
the parameter c acting as the bifurcation parameter. At c = 2.5 we observe a period
1 orbit, and at c = 5 we find the strange attractor for the Rössler system. Here
a = b = 0.2. [32]
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Figure 2.4: The bifurcation diagram of the Rössler system Eqn. (2.3) undergoing a
period doubling cascade to chaos. The distance between bifurcation points deter-
mines the value of δ̂, Eqn. (2.6), and the distance along x between stable maxima
determines α̂, Eqn. (2.7). The periodic window (c ≈ 5.5) reproduces the original
bifurcation cascade. [32]
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The fact that all systems which display a period doubling cascade to chaos

follow a similar path allows a tremendous freedom to scientists. In a perhaps overly

broad extension of this universality, we are now able to justify inquiry into the

nature of chaotic systems that may be difficult to study directly, using as an analog

a study of other, more accessible systems with similar dynamic structure.

Quasiperiodicity provides an alternative route to chaos [1]. As the control

parameter of the system is shifted towards a chaotic regime, additional frequency

components develop. If the ratio of the primary frequency components is irrational,

the closed behavior we saw in the period doubling bifurcation case will be absent.

However, the dynamics of the system are not chaotic, as they are still essentially

just the superposition of periodic oscillations; hence they are quasiperiodic.

As the value of the control parameter is increased further, the discrete fre-

quency content of the signal is lost to a continuous spectrum. In the case of a

deterministic system, such as in the case of the Taylor-Couette experiment reported

by Gollub and Swinney [25], the continuous spectrum observed is a strong indicator

of chaotic dynamics.

The intermittency route to chaos was originally studied by Pomeau and Man-

neville [33]. In this case, a parameter p of a nonlinear system is initially chosen such

that the system will display periodic dynamics. However, above a certain threshold,

pth, the system is unstable, and may exhibit intermittent deviations (bursts) from

the periodic orbit. As p increases further, the period between bursts decreases until

the original periodic orbit is no longer observed and the system is fully chaotic.

The intermittency route to chaos is illustrated in Fig. 2.5 for an initially pe-

riodic time series of z(t) in the Lorenz system, Eqn. (2.1). The parameters σ = 10

and b = 8/3 are fixed and r is the control parameter [33]. In this case, the burst-

ing threshold is rth = 166.06. Fig. 2.5(a) displays the periodic dynamics when the

Lorenz system is integrated with r = 166 < rth. Increasing r slightly and mov-

ing down the figure, we observe deviations from the initial periodic behavior. As

the control parameter is increased further, the intermittent bursting increases in

frequency.
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Figure 2.5: Intermittent transition to chaos. A periodic time series of the z coor-
dinate of the Lorenz system is found with r = 166 < rth (a). Increasing r above
the bursting threshold, we observe increasingly frequent bursts (b1-b3). The Lorenz
system (2.1) is integrated with the parameters σ = 10 and b = 8/3 fixed. [33]
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Pomeau and Manneville identified three species of intermittency due to three

generic bifurcations: Type I saddle node, Type II Hopf and Type III inverse period

doubling [33, 1]. As can be observed in Fig. 2.5, the interburst time decreases with

the growth of the bifurcation parameter. Pomeau and Manneville found the power

law scaling

〈∆T 〉 ∼
(p − pth)−1/2 Type I

(p− pth)
−1 Type II

(p− pth)
−1 Type III

, (2.8)

where 〈∆T 〉 is the mean interburst time. While Type II and Type III intermittency

share the same −1 decay exponent, their dynamics near pth are characteristic of the

underlying bifurcation.

Another intermittent route to chaos is found when changing a system parame-

ter leads to collisions of chaotic attractors with other attractors or periodic orbits,

or causes a sudden shift in the dimension of the attractor. In this case the system

displays crisis induced intermittency as it jumps from one attractor to another [1].

In these intermittent routes to chaos, the bifurcation parameter was varied

smoothly. However, an alternate form, labeled on-off intermittency, may result from

the coupling of chaotic systems [26, 27, 34] or from driving a system with a stochastic

signal [26, 35]. The latter case is in contrast to the other species of intermittency

mentioned; now the bifurcation parameter is the element being stochastically driven.

Despite the stochastic source, the statistics of intermittent events display a −3/2

power law distribution in time.

This distribution is evidenced in liquid crystal electroconvection experiments

by John, Behn and Stannarius [35]. In Fig. 2.6(I) a −3/2 power law decay extends

over several decades. Here, τ is the lifetime of laminar behavior, and α is a parameter

of the stochastic driving. The labels (a), (b) and (c) in Fig. 2.6(I) correspond to

increasing voltage, U, differences between the two charged plates in the experiment.

Power law distributions are found when examining the burst amplitudes in

Fig. 2.6(II) as well. Here, a decay exponent of −1 identifies the voltage at which

the Lyapunov exponent λ = 0, marking the transition to chaotic behavior [35].

14



Figure 2.6: Characteristic statistics of On-Off Intermittency observed in liquid crys-
tal electroconvection experiment. The interburst time distribution follows a −3/2
power law decay over several decades (I). Here, τ is the interburst time and α is
a parameter of the stochastic driving. The labels (a), (b) and (c) correspond to
increasing voltages, U. The slope of the log-log burst amplitude distribution shifts
with increasing U, (II). A slope of −1 indicates a Lyapunov exponent of λ = 0.[35]

2.2 Synchronization

Synchronization in chaotic systems is a surprising phenomenon. The fundamental

characteristics of chaotic systems, such as aperiodic dynamics and a sensitivity to

initial conditions, would seem to preclude synchronization. However, numerical

and experimental studies over the past decade have established the existence of

synchronization of chaos in diverse systems.

The first reported observations of the synchronization of coupled chaotic sys-

tems were in studies by Yamada and Fujisaka [36, 37]. Shortly after Afraimovich,

Verichev and Rabinovich [38] first advanced many of the tools necessary for un-

derstanding the synchronization of chaos. However, the field did not gain popular

recognition until the seminal work of Pecora and Carroll in 1990 [39].

In this study, the authors examined the dynamics of coupled chaotic mod-

els including coupled Rössler systems, Eqns. (2.3), and coupled Lorenz systems,

Eqns. (2.1), and chaotic circuits. These three-dimensional chaotic systems are uni-

directionally coupled such that one component of the drive system replaces its coun-
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Figure 2.7: Geometric representation of the complete replacement coupling scheme
used by Pecora and Carroll. One variable of the drive system replaces its coun-
terpart in the response system, resulting in identical synchronization of chaotic
dynamics.[15]

terpart in the response system. This coupling scheme is geometrically presented

in Fig. 2.7. In this complete replacement scheme, and with the proper choice of

coupling components, all of the Lyapunov exponents of the response system will

become negative and the two systems will synchronize. Note that the dynamics

of the drive system are unaffected and chaotic. This transition to synchronization

for two Rössler systems is presented in Fig. 2.8. Here, the two systems begin with

different initial conditions, but through the replacement of y(t) the response (right)

system synchronizes to the drive system (left) in only a few orbits.

While the deviation of trajectories was exponential in the uncoupled case, the

rate of synchronization of identical coupled systems is actually exponential in time.

This is apparent in Fig. 2.9(a) where the coupling variable for the identical Lorenz

systems is x(t). Here, the convergence of the two systems is seen as the differences

∆y = y2 − y1 and ∆z = z2 − z1 decay exponentially quickly [39]. However, identical

synchronization is not always possible. With only a 5% parameter detuning between

the drive and response Lorenz systems, ∆z and ∆y remain relatively constant after

a brief decay time. This limited convergence of the nonidentical coupled attractors

16



Figure 2.8: Synchronization of two chaotic Rössler systems through the replacement
of y(t) in the response system (right) with y(t) from the drive system (left). [39]

is seen in Fig. 2.9(b).

The difference between the complete synchronization seen in Fig. 2.9(a) and

the partial synchronization of Fig. 2.9(b) may be stated mathematically. The con-

dition for complete synchronization is simply

lim
t→∞

|x1(t)− x2(t)| = 0. (2.9)

Therefore, any dynamical differences between the two systems reduce to zero as the

systems evolve in time. The weaker requirement for partial synchronization is then

lim
t→∞

|x1(t)− x2(t)| < constant. (2.10)

The phase space where the condition |x1(t)− x2(t)| = 0 holds is called the synchro-

nization manifold.

A more general view of synchronization does not require that all the dynamical

characteristics of the studied systems match, merely that there is some relationship

between their dynamics. A simple case of this is lag synchronization, where one

system leads another [40]. In this case synchronization would be given by the relation

lim
t→∞

|x1(t) − x2(t− τ )| ≤ constant, (2.11)
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Figure 2.9: Synchronization of Lorenz attractors through complete replacement of
x(t). Identical systems exponentially converge to complete synchronization (a).
However, a 5% parameter mismatch between the coupled systems allows only partial
synchronization (b). [39]
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where τ is the time lag between the systems. In the case of perfect lag synchroniza-

tion, the constant on the right hand side of the equation is zero.

Phase synchronization is another weak form of synchronization, and was first

recognized in chaotic systems by Pikovsky [41] and Stone [42]. In this case, we may

decompose a times series as

x(t) = A(t) sin
(
φ(t)

)
, (2.12)

where A(t) is the time varying amplitude and φ(t) is the time varying phase of

x(t), and x(t), A(t), φ(t) ∈ R. In the case of a complex time series x(t), the term

sin
(
φ(t)

)
becomes exp[iφ(t)] and A(t) and φ(t) remain real. As the name implies,

phase synchronization requires only that

lim
t→∞

|mφ1(t) − nφ2(t)| = 0, (2.13)

and there is no bound on A(t). The positive integers m and n define the locking ratio

between dynamic systems. This concept of frequency locking ratios and regions is

often studied using Arnold’s Tongues [1]. We shall address phase synchronization

further in Section 5.2.

Even weak forms of synchronization like phase and lag synchronization require

a conceptually direct relationship between systems. Complex dynamical systems

may not reveal such easy relationships despite being intimately related. By writing

one dynamical system as a smooth function F of another

y(t) = F
(
x(t)

)
, (2.14)

then it is possible to consider a broad class of synchronization. This class of synchro-

nization is somewhat mislabeled as generalized synchronization [43]. The require-

ment of Eqn. (2.14) that the functional relationship is smooth and unidirectional is

a significant constraint.

This concept of generalized synchronization may be applied to a rich set of

dynamical systems, but may be difficult to detect. One statistic proposed for its

identification is mutual false nearest neighbors [43]. This statistic is related to
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mutual information and false nearest neighbors [3] and depends on the conjecture

that a set of nearest neighbor points in the phase space of x(t) will correspond to

neighboring points in the phase space of y(t).

Mutual false nearest neighbors does not always provide a good indication of

synchronization for complex systems. An intuitive and more robust tool is provided

by the auxiliary system method [44]. In this case, if generalized synchronization is

suspected, then a second response system, identical to the original response system,

is coupled to the drive system. The two response systems are independent of each

other. If the two response systems synchronize to each other, then they are each

related to the drive system through generalized synchronization. This may be simply

seen in the relations
y(t) = F

(
x(t)

)

y′(t) = F
(
x(t)

) ⇒ y(t) = y′(t), (2.15)

where y(t) and y′(t) are the identical response systems that are related to the drive

system x(t) through the function F .
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Chapter 3

Chaos in Lasers

Since they are monochromatic, unidirectional and often produce stable power out-

puts, lasers are considered benchmarks of stability with good reason. However, they

do possess the potential for complex and chaotic dynamics. As lasers have become

ubiquitous in modern technology and science, it is to our benefit to understand their

dynamics and the potential benefits they offer, as well as any limitations they may

impose.

3.1 Laser Equations

The basic equations of motion for laser systems are often derived using a semi-

classical methodology; the electric field is treated classically using Maxwell’s equa-

tions [45], and the gain medium is treated quantum mechanically [11, 9, 7]. The

classical treatment of the electric field is easily justified by the large numbers of

photons produced by lasers.
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The simplest approach to deriving the basic laser equations is to consider the

gain medium as a two-level atomic system which interacts with a classical electric

field. This system is described by the time dependent wave equation

HΨ = i~dΨ
dt

(3.1)

where H is the generally time dependent Hamiltonian and Ψ is the time dependent

wave function. We may decompose the wave function into components describing

the individual levels of the atom,

Ψ(r, t) = C1(t)Ψ1(r, t)+ C2(t)Ψ2(r, t). (3.2)

The coefficients C1 and C2 determine the probability of finding the system in either

the first or second energy level, and are normalized such that |C1(t)|2 + |C2(t)|2 = 1.

The density matrix for the system, ρ = |Ψ〉〈Ψ| may then be written as

ρ =


 |C1|2 C1C

∗
2

C∗
1C2 |C2|2


 . (3.3)

We may increase the transparency of Eqn. (3.1) further by separating the wave

functions into time dependent and independent parts,

Ψn(r, t) = e−iEnt/~ψn(r). (3.4)

The difference of the energy levels En in the exponential term determines the tran-

sition frequency

ωo =
1

~
(E2 − E1). (3.5)

Finally, we may separate the Hamiltonian H into components describing the

two level atom, Ho, and its interaction with the classical electric field, HI , where

Ho =


E1 0

0 E2


 , (3.6)

HI =


0 p

p 0


E(t). (3.7)
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Here, E(t) is the complex electric field amplitude and p is the dipole moment of the

atom along the direction of the electric field, and is defined as

p ≡ eX12. (3.8)

X12 is the displacement of the electron cloud about the atom along the direction of

the electric field, and e is the charge of a single proton.

Using the Heisenberg picture [46],

dρ

dt
= − i

~
[ρ, H ], (3.9)

we find the material rate equations

d(ρ22 − ρ11)

dt
= −γ‖

[
(ρ22 − ρ11) − (ρ22 − ρ11)

eq
]

+
i2p

~
[
E∗e−iωtρ12 + c.c.

]
, (3.10)

dρ12

dt
= −(γ⊥ + iωo)ρ12 +

ip

~
E(ρ22 − ρ11), (3.11)

where c.c. indicates the complex conjugate of the previous term. We have phenom-

enologically added the decay terms γ‖ and γ⊥, the population inversion decay rate

and the dephasing rate, respectively. Both terms naturally appear in a more rigorous

quantum mechanical derivation [47, 48]. Equations (3.10 & 3.11) are known as the

optical Bloch equations. Their macroscopic forms are found through the relations

N = Ntot(ρ22 − ρ11), (3.12)

P = Ntotp(ρ12 + ρ21). (3.13)

Here N is the population inversion, P is the polarization, and Ntot is the total

density of atoms which may contribute to the action of the laser. The macroscopic

material rate equations are

dN

dt
= −γ‖(N −Neq) +

i2

~
(E∗P + c.c.), (3.14)

dP

dt
= −(γ⊥ + iωo)P +

i|p|2

~ EN. (3.15)

Using the rotating wave approximation, we shift the complex polarization, Eqn. (3.15),

to a reference frame rotating at ω, the frequency of the interacting electric field.
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Eqn. (3.15) now becomes

dP

dt
= −(γ⊥ + i∆ω)P +

i|p|2

~
EN, (3.16)

where ∆ω = ωo − ω.

The classical electric field obeys the one dimensional wave equation

∂2E ′

∂z2
− 1

c2
∂2E ′

∂t2
= µo

∂2P ′

∂t2
(3.17)

derived from Maxwell’s equations. We may write the complex electric field as

E ′(z, t) = E(z, t) exp[i(ωt − βz)] and the complex macroscopic polarization P ′ =

1
2P (z, t) exp[−iβz]+c.c., where E(z, t) is the slowly varying complex amplitude and

P (z, t) is the complex slowly varying amplitude of the polarization. Using these

definitions as well as the slowly varying envelope approximation we find the simpler

wave equation

vg

∂E

∂z
+
∂E

∂t
=

−iω
ε
P. (3.18)

Here, ε is the permittivity of the laser medium, and vg is the group velocity of light

through that medium. In most laser systems the electric field amplitude does not

significantly vary over the length of the laser cavity, hence the uniform field approx-

imation allows ∂E
∂z

→ 0. With this final approximation, and phenomenologically

introducing the photon decay rate K, which may be determined through a rigorous

analysis of the laser cavity geometry and boundary conditions [49, 8], we obtain the

Maxwell-Bloch semiclassical laser equations

dE

dt
= −KE − iω

ε
P, (3.19)

dN

dt
= Q− γ‖N +

i2

~ (E∗P + c.c.), (3.20)

dP

dt
= −(γ⊥ + i∆ω)P +

i|p|2

~
EN. (3.21)

Q is a constant pump term.
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3.2 Maxwell-Bloch, Lorenz System Correspondence

An interesting aspect of the Maxwell-Bloch equations is that they have a direct

correspondence to the Lorenz equations [50, 11, 12]. In this comparison, E and P

are assumed to be real. This amazing coincidence of dynamical systems was the

impetus for studying chaos in optical systems. However, it was largely regarded as

a practical curiosity, as the requirement for a laser system to display instabilities is

[12]

K > γ‖ + γ⊥. (3.22)

This is the so called ‘bad cavity’ condition, so named as it requires that the photon

decay rate from the cavity must be greater than the relaxation rate of the laser

medium, therefore requiring intense pumping to reach threshold. A relatively trans-

parent output coupler is the simplest way to achieve this condition for a given active

medium. Beyond the system requirement of Eqn. (3.22), a stability analysis of the

Maxwell-Bloch equations, Eqns. (3.19-3.21), reveals the laser must be pumped 10-20

times above threshold to reach the ‘second laser threshold’, which marks the onset

of dynamic instabilities [12]. The ‘first laser threshold’ simply marks the onset of

lasing action.

With the bad cavity condition, Eqn. (3.22), a large pump input is required to

even reach the first threshold, and it was thought that the second was out of reach.

However, Weiss and co-workers [51] were able to meet these system requirements

and demonstrate instabilities in an ammonia ring laser operated at λ = 100µm. The

dynamics found show strong qualitative and quantitative agreement with the Lorenz

system in a similar parameter regime. Figure 3.1[51, 12] displays a comparison of

the phase spaces of the Lorenz system, x vs. dx/dt, Fig. 3.1(a), and the phase space

E vs. dE/dt for the ammonia laser, Fig. 3.1(b).

Beyond evidencing chaos in laser systems, this demonstration of a Lorenz-like

strange attractor also hints at the possibility of synchronizing chaotic lasers. Pecora

and Carroll’s seminal work demonstrating synchronization of chaos used Lorenz

systems among others [39] that we discussed in Section 2.2.
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Figure 3.1: Comparison of the phase space of a chaotic Lorenz system (x vs. dx/dt)
(a) and the phase space (E vs. dE/dt), an ammonia ring laser with similar scaled
parameters (b).[51, 12]

3.3 Laser Classifications

In the course of studying a stable CO2 laser’s transition to chaos, Arecchi and co-

workers advanced a classification scheme of single mode laser systems based on the

range of dynamics available to the laser [52]. A system which requires the full

Maxwell-Bloch equations to describe its dynamics is classified as a Class C laser.

This is the only class of lasers which may autonomously display chaotic dynamics as

a system must consist of at least three dynamic variables for chaos to be present [2].

For independent laser systems these three variables are the complex electric field

amplitude E(t), the real population inversion N(t), and the complex macroscopic

material polarization P (t). Class C lasers include lasers such as argon ion, krypton

ion, and the ammonia laser addressed above.

Class C lasers are systems where the time scales of all three Maxwell-Bloch

equations are similar, i.e. K ∼ γ‖ ∼ γ⊥. Only in this case may the field equation

display chaotic dynamics. If one dynamical variable evolves on a much faster time-

scale than the other two, then this ‘fast’ variable will track the slower variables

virtually instantaneously. Therefore, it will no longer have a perceivable effect on

the dynamics of the system, and we may adiabatically eliminate this equation from

the model. Typically, the polarization term will evolve on a faster time scale such

that γ⊥ � γ‖K. In this case, the polarization terms in Eqns. (3.19&3.20) are set to
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the steady state value

Po =
i|p|2EN

~(γ⊥ + i∆ω)
, (3.23)

and the laser equations become

dE

dt
= −KE + (γ⊥ − i∆ω)

ω|p|2

~ε(γ2
⊥ + ∆ω2)

EN, (3.24)

dN

dt
= Q− γ‖N − 4|p|2γ⊥

~2(γ2
⊥ + ∆ω2)

|E|2N. (3.25)

Lasers that are described by this set of two coupled equations are known as Class B

lasers. The lasers studied in this dissertation, Nd:YAG and erbium doped fiber ring

lasers, are included in this classification along with CO2, semiconductor, and ruby

lasers.

If the population inversion evolves on a sufficiently fast time scale, then it too

will track the electric field virtually instantaneously. This condition leads to a Class

A laser system, and possesses time scales that obey the inequality γ⊥, γ‖ � K. In

this case we may adiabatically eliminate Eqn. (3.25). The steady state value of the

population inversion is

No =
Q~2(γ2

⊥ + ∆ω2)

4|p|2γ⊥|E|2
, (3.26)

and the laser is now described by the single equation

dE

dt
= −KE +

Q(γ⊥ − i∆ω)~ω
4εγ⊥

E

|E|2
. (3.27)

Class A lasers include helium-neon lasers and dye lasers.

While only Class C lasers may autonomously display chaotic dynamics, it is

possible to generate chaotic dynamics in Class B lasers by increasing the number

of degrees of freedom in the laser system. This may be achieved by modulating

a system parameter such as the pump or cavity loss, increasing the number of

lasing modes, adding a feedback signal, introducing inhomogeneous broadening to

the system, injecting the laser with a detuned optical injection (the topic of Arecchi

and Lisi’s work, Ref. [52]), or adding some other nonlinearity or dynamical variable

to the Class B laser system.
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3.4 Nd:YAG Lasers

A significant portion of this dissertation concerns experiments and analysis of dy-

namics of a linear array of neodymium doped yttrium aluminum garnet (Nd:YAG)

lasers. Nd:YAG lasers have a long history in the study of nonlinear dynamics and

chaos. Just six years after Geusic et. al produced the first Nd:YAG laser in 1964

[53], Kimura and Otsuka reported period doubling bifurcations and chaotic spiking

dynamics in a modulated Nd:YAG laser [54]. We now summarize some of this Class

B laser’s properties and present a simple model which effectively describes a single

Nd:YAG laser.

3.4.1 Nd:YAG Properties

The prominence of Nd:YAG lasers in industry, research, medicine and military appli-

cations is due in large part to the excellent properties of the host material, yttrium

aluminum garnet. The chemical formulation of the host is Y3Al5O12, and forms

a cubic crystalline structure, as do most garnets [55]. The crystal is colorless and

optically isotropic, beneficial properties in a laser crystal, and possesses sufficient

hardness that it does not routinely fracture during fabrication. The structure gen-

erally is stable from very low temperatures to its melting point. Some thermal

properties of Nd:YAG are listed in Table (3.1) [55]. Of particular importance is the

thermal dependence of the index of refraction, ∂n/∂T which allows thermal lensing

to occur. Thermal lensing is required for the formation of stable laser cavities for

the linear Nd:YAG array described in Section 4.2 and studied in Chapters 4 and 5

[56].

In a Nd:YAG crystal the trivalent ion Nd3+ replaces Y3+. As the two ions pos-

sess the same positive charge there is no need for charge compensation. However,

the dimensions of the two ions differ by approximately 3%, so the doping concentra-

tion of Nd3+ is limited to 1% to restrict lattice distortions in the crystal. Table (3.2)

[55] lists some physical and optical properties of Nd:YAG.

Nd:YAG is a four-level laser system. This allows a population inversion to be
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Property Units 300K 200K 100k
Thermal conductivity Wcm−1K−1 0.14 0.21 0.58
Specific heat Wsg−1K−1 0.59 0.43 0.13
Thermal diffusivity cm2s−1 0.046 0.10 0.92
Thermal expansion K−1 × 10−6 7.5 5.8 4.25
∂n/∂T K−1 7.3 × 10−6 – –

Table 3.1: Thermal properties of Nd:YAG. [55]

Chemical formula Nd:Y3Al5O12
Weight % Nd 0.725
Atomic % Nd 1.0
Knoop hardness 1215
Thermal expansion coefficient
[100] orientation 8.2 × 10−6C−1, 0 − 250C
[110] orientation 7.7 × 10−6C−1, 10 − 250C
[111] orientation 7.8 × 10−6C−1, 0 − 250C
Linewidth 4.5Å
Stimulated emission cross section
4F3/4(R2)-4I11/2(Y3) σ21 = 6.5 × 10−19cm2

Fluorescence lifetime 230 − 240µs
Index of refraction 1.82(at λ = 1.0µm)

Table 3.2: Physical and optical properties of Nd:YAG. [55]

29



achieved relatively easily, since the terminating level of the laser transition is not

the ground level, and hence is nearly unpopulated. Any electron population present

in this terminal level is due primarily to thermal excitations from the ground state.

The decay times of the initial (4F3/4, τf = 240µs) and terminal (4I11/2, τf = 30ns)

levels of the laser transition further assist the generation of a population inversion.

A simplified energy level diagram for Nd:YAG is shown in Fig. 3.2, and indicates the

lasing transition from the R2 sublevel of 4F3/4 to the Y3 sublevel of 4I11/2, generating

photons with a center wavelength of λ = 1.064µm. The 1.064µm transition corre-

sponds to the dominant peak of the fluorescence spectrum of Nd:YAG. In Fig. 3.3

[55], this peak is labeled (5). The labels indicate the transitions between sublevels

of 4F3/4 and 4I11/2 shown in the subfigure.

The absorption spectrum of Nd:YAG is plotted in Fig. 3.4 [55]. Pumping the

laser crystal at wavelengths that are short compared to λ = 1.064µm and correspond

to strong absorption peaks results in efficient lasing. However, due to experimental

considerations we choose to pump the Nd:YAG laser array studied in Chapters 4

and 5 at λ = 514.5nm, which lies on a relatively weak absorption peak.

3.4.2 Nd:YAG Rate Equations

As mentioned above, Nd:YAG is a Class B laser, as the polarization decay rate

(γ⊥ ≈ 1011s−1) is much greater than the population inversion decay rate (γ‖ ≈

4× 103s−1) and the photon decay rate (K ≈ 107s−1). After adiabatic elimination of

the polarization, the Nd:YAG laser is described by two coupled ordinary differential

equations. The form of these equations may differ, depending on the choice of

normalization parameters, and the details of the laser systems. Here we describe a

single Nd:YAG laser with the transparent set of laser equations

dE

dt
=

1

τc
(G− ε1)E + iω1E, (3.28)

dG

dt
=

1

τf
(p −G−G|E|2). (3.29)
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Figure 3.2: Simplified energy level diagram of the Nd:YAG, a four level laser
medium. The laser transition from the R2 sublevel of 4F3/4 to the Y3 sublevel
of 4I11/2 generates photons with a center wavelength of λ = 1.064µm. [55]
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Figure 3.3: Fluorescence spectrum of Nd:YAG at T = 300K. The 1.064µm transi-
tion is corresponds to the dominant peak, labeled (5). The individual peaks in the
spectrum result from transitions between the various sublevels of 4F3/4 and 4I11/2

shown in the subfigure to the right. [55]

Figure 3.4: Absorption spectrum of Nd:YAG at T = 300K. Efficient laser action is
observed when the Nd:YAG crystal is pumped at a strong absorption wavelength.
Due to experimental considerations, we choose a pump wavelength of λ = 514.5nm,
a relatively weak absorption peak. [55]
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E is the normalized complex slowly varying electric field envelope, and G is the real

gain and is proportional to the population inversion. The time scales of the laser

equations are determined by the cavity round trip time, τc = 400 − 500ps, and the

fluorescence time of the upper level of the laser transition, τf = 230−240µs. p is the

pump parameter, ε1 is the loss coefficient of the single laser, and ω1 is the detuning

of the laser from a fundamental cavity mode.

3.5 Erbium Doped Fiber Ring Lasers

The lasing ion of erbium, like neodymium is a trivalent lanthanide [57], and forms

Class B laser systems as well. Erbium lasers have received significant attention,

as they generate light at λ = 1.5µm, the minimum loss wavelength of fused silica

(optical fiber)[58]. This peak wavelength and broad gain bandwidth have earned

Er3+ systems a prominent role in telecommunications and research.

3.5.1 Erbium Doped Fiber Properties

An erbium doped fiber ring laser (EDFRL) is a three-level laser system whose ter-

minal level of the laser transition is identical to the Er3+ ground state. Achieving

a population inversion in such a system is especially difficult, as it requires moving

the majority of the electrons from the ground state. Fortunately, the excited energy

level’s amazingly long fluorescence time (τf = 10ms) makes laser action possible.

The polarization decay time of Er3+ is τp ≈ 1fs, which easily justifies the Class B

laser approximation. Table 3.3 lists some of the properties of erbium doped fiber

systems.

The energy level diagram presented in Fig. 3.5 [57] displays the absorptive and

radiant transitions of erbium doped glass. The corresponding optical wavelengths

are given in nanometers for the absorption and experimentally observed radiative

transitions. We are concerned with a pump mechanism that will allow stimulated

emission near λ = 1.5µm, the 4I13/2 → 4I15/2 radiant transition. The two primary
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Ion Er3+

Absorption cross section,
4I15/2 → 4I11/2 σpeak

a = 7.9 × 10−21cm2

Stimulated emission cross section
4I13/2 → 4I15/2 σpeak

e = 6.7 × 10−21cm2

Fluorescence lifetime 10ms
Polarization lifetime 2.1fs
Lineshape function g(νs) = 9.3 × 10−16

Index of refraction 1.46 (at λ = 1.5µm)

Table 3.3: Properties of Er:glass. [57, 59]

possibilities are optically pumping the doped fiber at λ = 1.48µm or at λ = 980nm.

In the former case, electrons are excited to energetic sublevels of the 4I13/2 energy

level, and quickly decay to lower sublevels. It is from these minimal sublevels that

the radiant transition occurs. Pumping with λ = 980nm raises electrons to 4I11/2,

where they undergo a fast ‘non-radiating’ transition to 4I13/2. The EDFRLs utilized

for this research use semiconductor pump lasers operating at λ = 980nm.

Figure 3.6 displays the absorption spectrum of erbium doped fiber [57]. The

absorption peaks are labeled with their corresponding raised energy levels. We

utilized the absorption peak labeled 4I13/2 (λ = 980nm) for optical pumping in this

research.

Although the radiant transitions take place between quantized energy levels of

Er3+, the resulting spectrum extends over many nanometers. This broadening is due

in part to several mechanisms which break degeneracies in the energy level diagrams.

These include electron-electron interactions and spin-orbit coupling inherent to the

erbium ion, and most significantly the Stark effect [57, 59], due to interactions with

the host material. The Stark effect is also known as the crystal field interaction in

doped materials. Here, the host material generates local electric fields peculiar to its

crystal structure. These electric fields may lift additional degeneracies in the Er3+

energy levels. On a macroscopic scale, the glass host may be viewed as amorphous.

However, there exist microcrystal structures throughout. Since the details and com-

position of these local lattices vary throughout the material, then the local electric
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Figure 3.5: Energy level diagram of erbium doped optical fiber displaying absorptive
and radiant transitions. Wavelengths in nanometers are given for those transitions
observed experimentally. [57]

Figure 3.6: Absorption spectrum of erbium doped fiber. We utilized the absorption
peak labeled 4I13/2 (λ = 980nm) for optical pumping in this research. [57]
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Figure 3.7: Amplified spontaneous emission spectrum of erbium doped fiber opti-
cally pumped at λ = 980nm. The broadening due to the crystal field interaction
(Stark effect) produces a gain region extending from λ = 1525nm to λ = 1560nm.

fields change, allowing an expansive broadening of the amplified spontaneous emis-

sion spectrum. This broadening is apparent in the amplified spontaneous emission

optical spectrum of erbium doped fiber pumped at λ = 980nm, Fig. 3.7. We observe

that the 4I13/2 → 4I15/2 transition may now allow significant gain of optical signals

with λ = 1525 → 1560nm.

Exhaustive treatments of erbium doped fiber are contained in Refs. [57, 59].

3.5.2 Properties of Optical Fiber

The single-mode nonpolarization-maintaining optical fiber that forms the ring cavity

has significant effects on the laser field as well. As the very designation of the fiber

suggests, the polarization state of light may be affected by the optical fiber [60].
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A length of nonpolarization maintaining fiber may be thought of as a collection

of randomly oriented optical waveplates, leading to some net birefringence over the

length of the optical fiber. The effect of a length l of optical fiber on the polarization

state of the light is expressed by the equation


E1(l)

E2(l)


 =


 f g

−g∗ f ∗




E1(0)

E2(0)


 , (3.30)

where E1 and E2 are the projections of the complex electric field amplitude onto two

orthogonal linearly polarized states. The unitary Jones matrix


 f g

−g∗ f ∗


 defines

the polarization transformation [60]. While the birefringence is sensitive to me-

chanical and environmental stresses, in a vibration isolated, temperature controlled

laboratory the birefringence may be taken to be constant.

An additional effect is due to the fact that the index of refraction n(ω) is

frequency dependent, so when a pulse of light containing a range of frequencies is

launched down a fiber, it will become broadened as the component frequencies of the

pulse experience a range of n(ω). This pulse broadening is known as group velocity

dispersion, and is quantified by β2 = d2β/dω2. β(ω) is defined in the complex

electric field by the relation E ′(z, t) = E(z, t) exp[i(ωt − β(ω)z)] where E ′(z, t) is

the complex electric field and E(z, t) is its complex amplitude. For single mode

optical fiber β2 ≈ −20ps2/km [58].

An additional family of nonlinearities are introduced by the Optical Kerr Effect

[61] that describes how the index of refraction is shifted by an intense field. This

intensity dependence is written as

n(ω, |E|2) = n1(ω) + n2|E|2. (3.31)

In optical fiber n1(λ = 1.5µm) = 1.44 and n2 = 2.2 − 3.4 × 10−20m2/W . This

nonlinearity leads to self phase modulation and cross phase modulation where one

laser mode may modulate the optical phase of another [62]. Additionally, n2 is not

necessarily identical along orthogonal transverse axes of the optical fiber. Therefore,

the Optical Kerr Effect may lead to an additional birefringence term in the system.
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A final nonlinearity present in optical fiber is four wave mixing where tightly spaced

laser modes may generate additional modes [62]. Abarbanel et al. [63] considered

these nonlinear effects in a model similar to Eqns. (3.45, 3.46, & 3.47) and concluded

the Optical Kerr Effect is the source of chaotic fluctuations in EDFRL intensity time

series.

3.5.3 Erbium Doped Fiber Ring Laser

A conventional laser system consists of a linear cavity containing the active medium,

with mirrors on either end. The output beam is transmitted through a partially

reflecting mirror. In a fiber ring laser, the cavity is not defined by mirrors, and it is

far from linear. Instead the two ends of the erbium doped fiber are connected with a

length of passive fiber, forming a ring. Light may be coupled from the cavity using

an evanescent field coupler. One potential advantage of EDFRLs is the extremely

long cavity lengths that they make possible. Typical solid-state laser cavities are

only centimeters long. However, EDFRLs may be tens of meters long. This leads

to round-trip times on the order of hundreds of nanoseconds, allowing resolution of

sub-round trip dynamics [59, 14, 64, 63].

A typical setup of a basic erbium doped fiber ring laser is presented in Fig. 3.8.

The active medium of the ring laser is the erbium doped fiber amplifier which

contains a length of doped fiber. Figure 3.9 is a schematic of the components of an

erbium doped fiber amplifier. The doped optical fiber is optically pumped with a

980nm semiconductor diode laser. The pump laser field is injected into the erbium

doped fiber using a wave division multiplexing coupler. Also internal to the erbium

doped fiber amplifier is a pair of Faraday optical isolators which act as ‘diodes’ for

light. This ensures the unidirectional circulation of the laser field in the ring cavity

in the direction of the arrow in Fig. 3.8.

If the ring laser is constructed from nonpolarization maintaining fiber (as the

ones used in this research were), then the laser will possess some general elliptical

polarization state. By adjusting the net birefringence of the cavity using a polar-
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Amplifier

Polarization

Controller

Ring Laser

Coupler

Figure 3.8: Simple erbium doped fiber ring laser setup. The doped fiber amplifier
acts as the active medium of the laser. The components are detailed in Fig. 3.9.
Light propagates unidirectionally in the ring, and may be coupled out using an
evanescent field coupler. The net birefringence of the ring may be adjusted using a
polarization controller, affecting a number of experimental observables.

ization controller, it is possible to adjust the polarization state of the ring laser,

select from various dynamic regimes, and even tune the optical frequency of the

laser. There are two dominant types of polarization controllers. The first type is

an all-fiber polarization controller, where mechanical stresses on the fiber (twisting,

compression) induce a local shift in birefringence. The second type is an optical

wave plate polarization controller consisting of λ/4, λ/2, λ/4 optical wave plates.

By rotating the plates to adjust their relative orientations, the net birefringence of

the cavity is affected.

While an EDFRL operating above threshold possesses a much narrower optical

spectrum, it still demonstrates gain over a very wide region. An sample spectrum

of an EDFRL is presented in Fig. 3.10. In this case the ring cavity length is 41.5m

and the system is pumped well above threshold. An optical waveplate polarization

controller was used to tune the laser wavelength to a single, well defined peak.
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Figure 3.9: Basic component structure of an erbium doped amplifier. A 980nm
pump laser excites the erbium doped fiber. The pump field is injected into the
doped fiber using a wave division multiplexing (WDM) coupler. Two Faraday optical
isolators enforce the direction of propagation of the lasers in Fig. 3.8.

The full width at half max of the peak is ∆λ ≈ 600pm while the longitudinal

mode spacing (determined by the cavity length) is ≈ 40fm. So the lasing EDFRL

possesses approximately 15000 modes!

3.5.4 EDFRL Rate Equations

Due to the length of the ring laser cavity and the division of passive and active

fiber, a delay differential representation of the fiber ring laser system is necessary

for an accurate representation of the dynamics. Similar equations were presented

in Refs. [59, 14], and details of the derivation are corrected here. As mentioned

above, we may adiabatically eliminate the polarization term from the EDFRL rate

equations. Additionally, we are interested in the case where there is no well defined

polarization state. Hence, we begin our derivation of the delay differential laser

equations with a system similar to the Class B equations we derived in Sections 3.1
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Figure 3.10: Optical spectrum of EDFRL pumped well above threshold. Polariza-
tion controllers tuned to produce a single well defined peak. The full width at half
max is ∆λ = 600pm while the longitudinal mode spacing is just 40fm.
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& 3.3, Eqns. (3.24 & 3.25),

∂E1

∂t
= −vg

∂E1

∂z
+ (γ⊥ − i∆ω1)

ω1|p|2

~ε(γ2
⊥ + ∆ω2

1)
E1N, (3.32)

∂E2

∂t
= −vg

∂E2

∂z
+ (γ⊥ − i∆ω2)

ω2|p|2

~ε(γ2
⊥ + ∆ω2

2)
E2N, (3.33)

∂N

∂t
= Q − γ‖(N + Ntot)

−
4|p|2γ⊥

~

(
|E1|2

(γ2
⊥ + ∆ω2

1)
+

|E2|2

(γ2
⊥ + ∆ω2

1)

)
N. (3.34)

We have decomposed the laser field into two orthogonally polarized fields which

are identified by numerical subscripts. The group velocities, vg, of light along or-

thogonal polarization directions are identical as we are considering propagation in

homogeneous, nonpolarization maintaining, single-mode optical fiber. The decay

term for the electric field has been eliminated for the moment, but will be addressed

in the boundary conditions of the ring cavity. The consideration of the Ntot term

is required by the three-level nature of erbium lasers, in which the terminal level of

the laser transition is also the ground state. All other variables and parameters are

defined as in Section 3.1.

We may simplify these equations by introducing the following change of vari-

ables and definitions:

N → N − No, Q = Q+ γ‖No

am =
4|p|2γ⊥ωm

~εvg(γ2
⊥ + ∆ω2

m)
, ∆m =

∆ωm

γ⊥
.

The index m = 1, 2 indicates the polarization state and No is the threshold popula-

tion inversion. The ring laser equations now read,

∂E1

∂t
= −vg

∂E1

∂z
+ (1 − i∆1)vg

a1

4
E1(N −No), (3.35)

∂E2

∂t
= −vg

∂E2

∂z
+ (1 − i∆2)vg

a2

4
E2(N −No), (3.36)

∂N

∂t
= Q− γ‖(N + Ntot) − εvg

(
a1

|E1|2

~ω1

+ a2
|E2|2

~ω2

)
(N −No). (3.37)

In general Em and N depend on t and z.

This description of the ring laser depends on coupled partial differential equa-

tions that may be difficult to approach numerically. By changing coordinates to a
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retarded reference frame that moves in step with a light wave circulating in the ring

cavity,

τ ≡ t − z/vg , (3.38)

we are able to consider a numerically simpler set of delay and ordinary differential

equations. In this reference frame, the field equations may now be written

∂E1(z, τ + z
vg

)

∂z
= (1 − i∆1)

a1

4
E1(z, τ +

z

vg

)
(
N(z, τ +

z

vg

) −No

)
, (3.39)

∂E2(z, τ + z
vg

)

∂z
= (1 − i∆2)

a2

4
E2(z, τ +

z

vg

)
(
N(z, τ +

z

vg

) −No

)
. (3.40)

Proper construction of the delay differential equations requires that we treat

the active and passive lengths of fiber separately. We now consider the effect of the

doped fiber length. Making the simplifying and naive assumption that the active

fiber is non-birefringent, the effect of the gain medium on the electric fields in the

retarded reference frame may be found by integrating over the length of the active

fiber L. We find

E1(L, τ +
L
vg

) = E1(0, τ ) exp
[a1

4
(1 − i∆1)(W (τ +

L
vg

) −Wo)
]
, (3.41)

E2(L, τ +
L
vg

) = E2(0, τ ) exp
[a2

4
(1 − i∆2)(W (τ +

L
vg

) −Wo)
]
, (3.42)

where W (τ + L/vg) =
∫ L

0 Ndz(z, τ + z/vg) is the total population inversion for the

doped fiber laser, and Wo = NoL. Integrating Eqn. (3.37) over the doped length of

fiber, we find the rate equation

dW (τ )

dτ
= QL− γ‖(W (τ )+ Wtot)

−vgε
|E1(0, τ )|2

~ω1

(
exp[a1{W (τ +

L
vg

) −Wo}] − 1
)

−vgε
|E2(0, τ )|2

~ω2

(
exp[a2{W (τ +

L
vg

) −Wo}] − 1
)
, (3.43)

where Wtot = NtotL.

The boundary conditions due to the passive fiber are found by considering

the effect the fiber has on the electric field as it travels its length. The losses in

the ring laser may be isolated in the passive fiber and are represented by the return
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coefficient R. For a EDFRL of total length L and active fiber length L the boundary

conditions are

E1(0, τ )

E2(0, τ )


 = R


 f g

−g∗ f ∗




E1(L, τ − L−L

vg
)

E2(L, τ − L−L
vg

)


 . (3.44)

This set of boundary conditions defines the electric field at the input of the doped

fiber (z = 0) as a time delayed, attenuated version of the field leaving the gain

medium that has undergone some polarization rotation. This polarization rotation

is defined by the unitary Jones matrix


 f g

−g∗ f ∗


, and accounts for the birefringent

nature of optical fiber [60]. Applying these boundary conditions to Eqns. (3.41, 3.42,

& 3.43) the completed delay-differential EDFRL model is

E1(L, τ +
L
vg

) = R
(
fE1(L, τ −

L −L
vg

) + gE2(L, τ −
L−L
vg

)
)
×

exp
[a1

4
(1 − i∆1)(W (τ +

L
vg

) −Wo)
]
, (3.45)

E2(L, τ +
L
vg

) = R
(
−g∗E1(L, τ −

L −L
vg

) + f ∗E2(L, τ −
L−L
vg

)
)
×

exp
[a2

4
(1 − i∆2)(W (τ +

L
vg

) −Wo)
]
, (3.46)

dW (τ )

dt
= QL− γ‖(W (τ )+ Wtot)

−vgεR
2
|fE1(L, τ − L−L

vg
) + gE2(L, τ − L−L

vg
)|2

~ω1

(
exp[a1{W (τ +

L
vg

) −Wo}] − 1
)

−vgεR
2
| − g∗E1(L, τ − L−L

vg
) + f ∗E2(L, τ − L−L

vg
)|2

~ω2

(
exp[a2{W (τ +

L
vg

) −Wo}] − 1
)
. (3.47)

Note that the time delay in the field equations is equal to L/vg , the round trip time

of light in the ring cavity. This leads to chaotic structures which will nearly repeat

on round trip timescales. We shall see evidence of this dynamic feature in power

spectra of EDFRL intensity time series in Sections 6.2 & 6.3. For a discussion of

the sub-round trip dynamics of EDFRLs, see Refs. [59, 14]
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Chapter 4

Synchronization of Chaos in a Three Laser Array

4.1 Laser Arrays

Lasers are an incredible tool for research, and they have many practical applications.

This is due, in large part, to their unique ability to produce highly directional,

monochromatic, coherent light. However, many applications are power-intensive,

and there are limitations to the output of a single laser, because of technical (e.g.

material breakdown due to large local fields) and practical considerations (e.g. cost,

ease of construction). Fortunately, an array of relatively weak lasers may be coupled

together in such a way that they are phase locked, producing peak powers that are

far beyond what can be produced by a single laser, while maintaining the desir-

able properties of a single laser. Since intensity is the square of the electric field

amplitude, the peak intensity of a phase-locked array is given

I = |E|2 =
∣∣∣

N∑

j=1

Ej

∣∣∣
2

= N2|Eo|2. (4.1)
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Here, E and Ej are the complex electric fields of the laser array and array elements,

respectively. We assume each of the N lasers is of equal intensity, such that Ej = Eo.

In the case of an unlocked array, the fields add incoherently, so the peak intensity

of the array is simply the sum of the individual intensities of the component lasers,

I = N |Eo|2 [65].

The first investigations into coupled arrays of lasers were conducted by Basov

and co-workers in 1965 [66, 67], in their attempts to produce coherent light with an

array of semiconductor diode lasers. Advanced, high power semiconductor arrays

are commonplace today in laboratories and industry.

Synchronization is another important consequence of coupling lasers. Synchro-

nized chaotic lasers allow the possibility of hiding messages in the chaotic waveforms.

Such a communication scheme was demonstrated by VanWiggeren and Roy using

erbium-doped fiber ring-lasers [68, 14]. Recently Tang et al. have demonstrated

transmission of pseudo-random bits at 2.5GHz using synchronized, chaotic semi-

conductor diode lasers [69].

However, semiconductor diode laser arrays do not always lend themselves to

easy study. The fast evolution of their electric fields, combined with the inability to

modify coupling of the array elements, makes detailed, thorough experiments diffi-

cult. Constructing a coupled solid state laser array in neodymium doped yttrium

aluminum garnet (Nd:YAG), where the relaxation oscillations are on the order of

100kHz, allows greater experimental resolution of the laser dynamics. Additionally,

the distance between lasers in the array and hence the coupling, may be varied in

this solid state array, allowing greater experimental flexibility. A study of synchro-

nization in such an array makes up the remainder of this chapter and the following

chapter, with the notable exception of Section 4.1.5. We begin by reviewing cou-

pling, instabilities and synchronization found in previous studies of a two element

Nd:YAG laser array [70, 71, 72]. We also review predictions of synchronization in a

three element semiconductor laser array model studied by Winful and Rahman [73]

in Section 4.1.5.
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4.1.1 Two Coupled Laser Model

It is straightforward to expand the Class-B laser equations describing a single

Nd:YAG laser presented in Section 3.4.2 to an array of two mutually coupled, single

mode lasers, resulting in the system [70]

dE1

dt
= τ−1

c [(G1 − ε1)E1 − κE2] + iω1E1,

dG1

dt
= τ−1

f [p1 − G1 −G1|E1|2], (4.2)

dE2

dt
= τ−1

c [(G2 − ε2)E2 − κE1] + iω2E2,

dG2

dt
= τ−1

f [p2 − G2 −G2|E2|2].

As before, En is the slowly varying complex electric field, and Gn is the real gain.

The index n = 1, 2 designates the array element. The time scales of the lasers are

largely determined by τc ≈ 400 − 500ps and τf ≈ 240µs, the cavity round trip time

and the population decay time, respectively. εn is the loss coefficient, and pn is the

pump rate. The critical deviations from the single laser equations are the coupling

parameter κ, and the detuning ωn of laser n from some common cavity mode. Notice

that the coupling is confined to the field equations. The negative sign preceding κ

is due to the observed stable state of anti-phase locking, where the two lasers are

locked π out of phase. We shall discuss this term in more detail in the following

section.

By decomposing the complex electric field such that E(t) = E(t)exp[iφ(t)],

where E(t) is the real, time varying electric field amplitude and φ(t) is the real

47



phase we may re-write Eqns. (4.2) in the more transparent form

dI1
dt

= 2τ−1
c [(G1 − ε1)I1 − κ

√
I1I2 cos(φ2 − φ1)],

dG1

dt
= τ−1

f [p1 −G1 −G1I1],

dφ1

dt
= ω1 −

1

τc

√
I2
I1
κ sin(φ2 − φ1), (4.3)

dI2
dt

= 2τ−1
c [(G2 − ε2)I2 − κ

√
I2I1 cos(φ1 − φ2)],

dG2

dt
= τ−1

f [p2 −G2 −G2I2],

dφ2

dt
= ω2 −

1

τc

√
I1
I2
κ sin(φ1 − φ2).

The individual laser intensities are given by In = |En|2. As we are interested in

the synchronization of two identical, mutually coupled lasers, we allow εn = ε and

pn = p.

4.1.2 Coupling and Coherence

A population inversion, and hence laser action, in the experiment is achieved by

optically end-pumping the Nd:YAG crystal with two identical beams from an argon

ion laser operating at λ = 514.5nm. in this fashion we generate two parallel Nd:YAG

lasers. In the Nd:YAG crystal the pump beam have waists of wo ≈ 20µm, and

the dimension of the infrared Nd:YAG lasers (λ = 1064nm) are wo ≈ 200µm.

Assuming a Gaussian intensity distribution, wo is the 1/e2 radius of the beam.

Even in the strongly coupled case where the two Nd:YAG lasers are separated by

just d = 0.6mm, we clearly see that coupling is solely due to the overlap of the

electric fields of the Nd:YAG lasers, Fig. 4.1, as there is no overlap of the fields of

the pump beams. The gain region of the crystal is defined by the extent of the pump

beam, and hence there is no coupling by gain sharing, either. This fact is apparent

in the model, Eqns. (4.2). The profile and dimension of the lasers are experimentally

verified using a photodiode with a rotating slit aperture.

The level of coupling between the infrared lasers is determined by calculating

the overlap integral of the transverse fields. With a Gaussian intensity distribution,
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Figure 4.1: Coupling in the laser array is due solely to the overlap of the fields of
the Nd:YAG lasers. The transverse electric field amplitudes of the coupled Nd:YAG
lasers (solid lines) and the Ar+ pump lasers (dash-dot lines) are plotted assuming
Gaussian intensity distributions and a separation of d = 0.6mm. This corresponds
to a strongly coupled case with κ ≈ 10−3.

a constant phase front, and a 1/e2 radius of wo we write the transverse electric field

of a single laser as

E ′
n(x, y, t) =

En(t)

πw2
o

e

[
−x2+y2

w2
o

]
. (4.4)

Then the overlap integral of the fields of the two Nd:YAG lasers separated by a

distance d is

∫ ∞

−∞

∫ ∞

−∞
dxdyE ′

1(x + d, y, t)E ′
2(x, y, t) =

E1(t)E2(t)

2πw2
o

exp
[
− d2

2w2
o

]
. (4.5)

With proper normalization such that for a separation of d = 0, κ = 1, we then

define [70]

κ ≡ exp
[
− d2

2w2
o

]
. (4.6)

With sufficiently large coupling κ, the two lasers of the experimental array

lock and synchronize [70]. In this case, intensities and gains of the two lasers are

identical, and Eqns. (4.3) reduce to just three equations describing the intensity,
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gain and phase difference Φ = φ1 − φ2 of the two lasers. This final equation,

dΦ

dt
= (ω1 − ω2) + 2κτ−1

c sinΦ, (4.7)

is the Adler equation [74] and has been frequently used to study coupled oscillators

[75]. In the limit of small detuning, ∆ω = ω1 −ω2 << 2κτ−1
c , the two laser array is

stable only in the anti-phase locked state corresponding to Φ = π. Instabilities and

relative phase jumps were reported at the critical value of ∆ω ≈ 2κτ−1
c [70, 71] and

shall be discussed in the next section. Large detunings preclude phase locking.

Experimentally, the stable anti-phase locked state is easily observable in the

far-field intensity distribution. In Fig. 4.2 [70] the two-lobed structure shows de-

structive interference along the line of symmetry, demonstrating that the two lasers

are locked with a phase difference of Φ = π. A single lobe would be seen in the case

of locking with Φ = 0. The separation of the two lasers is d = 0.6mm.

As the coupling of the two lasers increases, the level of mutual coherence

increases as well. Coherence may be quantified experimentally by measuring the

visibility V , the depth of interference fringes resulting in overlapping the two lasers.

Visibility is defined by the relation

V ≡ 〈I〉max − 〈I〉min

〈I〉max + 〈I〉min

, (4.8)

where Imax is the peak intensity and Imin is the minimum intensity due to con-

structive and destructive interference of the laser fields [70]. A value of V = 0

indicates uncoupled, mutually incoherent beams, and V = 1 corresponds to the

locked, mutually coherent case.

Analytically, we may calculate the time averaged interference pattern resulting

from overlapping two laser fields using the equation

〈I〉 = 〈|E1|2〉 + 〈|E2|2〉 + 2|〈E∗
1E2〉| cos(ω(t1 − t2) + ϕ), (4.9)

where ϕ is some initial phase difference [9]. It may be shown that Eqn. (4.8) is

equivalent to the analytically more convenient definition

V ≡
√
〈cos(Φ)〉2 + 〈sin(Φ)〉2 (4.10)
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Figure 4.2: The far-field intensity distribution of two anti-phase locked Nd:YAG
lasers. The two lobed structure shows destructive interference along the line of
symmetry, demonstrating that the two lasers are locked with a phase difference
of Φ = π. Increasing intensity is represented by darker shading. The lasers are
separated by d = 0.6mm. [70]
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Figure 4.3: Comparison of experimental and theoretical measurements of visibility
as a function of beam separation. The discrete points correspond to experimental
measurements with wo ≈ 200µm. The dashed visibility curve is calculated by choos-
ing a detuning ∆ω = 5000 rad/s and beam size wo = 200µm. Increasing the beam
size to wo = 250µm, the solid visibility curve is predicted. [70]
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We find good agreement between experimental measurements of visibility and the

theoretically predicted values in Fig. 4.3 [70]. The discrete points represent ex-

perimental measurements of visibility at increasing beam separations (decreasing

coupling). The dashed visibility curve is calculated by choosing a detuning ∆ω =

5000 rad/s and beam size wo = 200µm. Increasing the beam size to wo = 250µm

the solid visibility curve is predicted.

4.1.3 Amplitude Instabilities

We now return to the critical value of detuning in the Adler equation, Eqn. (4.7),

where ∆ω ≈ 2κτ−1
c . In this case the intensities of the coupled lasers are periodically

modulated due to the cos(Φ) term in Eqns (4.3). The modulation frequency is

simply given by

ωmod =
√

∆ω2 − (2κτ−1
c )2. (4.11)

In the situation that ωmod is close to the relaxation frequency of the laser elements

of the array, subharmonic resonances may occur, inducing amplitude instabilities

and deterministic chaos [76, 77]. We observe these instabilities in the three laser

array in Section 4.3 as well. The destabilizing effect of tuned modulation on laser

systems has been widely studied [78, 79, 80, 81].

In the two element Nd:YAG laser array under consideration, the relaxation os-

cillation frequency is νrel ≈ 100kHz. Amplitude instabilities are observed, Fig. 4.4(a),

when the lasers are positioned with an intermediate separation of d = 1.03mm, pro-

ducing a coupling of κ ≈ 2 × 10−5, and an experimentally determined detuning of

∆ω ≈ 2π × 1MHz. Additionally, large variations of the detuning frequency of the

two lasers on the order of 10MHz were observed in the amplitude instability regime.

[71]

In order to model the laser array dynamics in this unstable regime, a stochastic

colored noise term is added to the detuning of the lasers in Eqns. (4.2). Varying the

frequency shift of each of the lasers from the common cavity mode independently,

ωn = ω0,n + ξn(t). The mean detuning from the common mode is given by ω0,n.
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Figure 4.4: Experimental (a) and numerical (b) intensity time series displaying
amplitude instabilities. The instabilities are due to subharmonic resonances between
the individual relaxation oscillation frequencies and periodic modulations found at
intermediate levels of coupling between the two lasers of the array. The experimental
time series (a) was obtained with a beam separation of d = 1.03mm. The simulated
time series (b) was calculated using stochastically varying detuning with a mean
of ∆ω = 5 × 105s−1. The variation was supplied by a zero mean colored noise of
strength D = 5 × 109s−1 and a correlation time θ = 3ms. [71]

ξn(t) is the colored noise term with a zero mean, strength D and correlation time θ

such that 〈ξn(t)ξm(t′)〉 = δnm
D
θ

exp[−|t′ − t|/θ] [82]. Choosing D = 5 × 109s−1 and

θ = 3ms with a mean relative detuning of ∆ω = 5× 105s−1, simulations of the laser

equations show good agreement with experimental results, Fig. 4.4(b) [71].

4.1.4 Synchronization of Two Coupled Lasers

With increased coupling, resulting in phase locking and mutual coherence of the laser

array elements, it is only natural to expect synchronization of the intensity dynamics

to follow. To justify this expectation, we briefly study the stability analysis of

Eqns.(4.2)[14]. Changing variables to the sum and difference variables I+ = I1 + I2,
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I− = I1 − I2, G+ = G1 + G2, and G− = G1 −G2 we find the system

dI+
dt

= 2τ−1
c

[
G+I+

2
+
G−I−

2
− εI+ + κ

√
I2
+ − I2

−

]
,

dG+

dt
= τ−1

f

[
2p − G+I+

2
− G−I−

2
−G+

]
,

dI−
dt

= 2τ−1
c

[
G+I−

2
+
G−I+

2
− εI−

]
, (4.12)

dG−

dt
= τ−1

f

[
−G+I−

2
− G−I+

2
−G−

]
,

dΦ

dt
= ∆ω + κτ−1

c

(
2I+√
I2
+ − I2

−

)
.

Here, Φ = φ1 − φ2 as before. We may refer to the sum and difference variables

as the tangential and transverse variables, respectively, as they describe movement

along and orthogonal to the synchronization manifold. The stable, anti-phase locked

state corresponds to the fixed points Φ′ = (2j + 1)π, and I ′− = G′
− = 0, where j is

some integer. The fixed points for the tangential variables are calculated by setting

dI+/dt = dG+/dt = 0, resulting in the complete set of fixed points

I ′+ = 2p
ε−κ

− 2, G′
+ = 2(ε − κ),

I ′− = 0, G′
− = 0, (4.13)

Φ′ = (2j + 1)π.

Linearizing Eqns. (4.12) about these fixed points, we compute the tangential Lya-

punov exponents

λ+ =
1

2

(
−

2 + I ′+
2τf

±

√
(2 + I ′+)2

4τ 2
f

− 2G′
+I

′
+

2τfτc

)
, (4.14)

and the transverse Lyapunov exponents

λ− =
1

2

(
−

2κ

τc
−

2 + I ′+
2τf

±

√(
−

2κ

τc
−

2 + I ′+
2τf

)2

−
κ(2 + I ′+)

τcτf
−

2G′
+I

′
+

2τfτc

)
. (4.15)

As the real parts of both sets of exponents are negative, the set of fixed points in

Eqns. (4.13) are stable, and the dynamics of the two laser array will remain on the

synchronization manifold.
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Figure 4.5: Synchronization of chaotic intensity dynamics in a coupled two laser
array. The pump beams are separated by d = 0.75mm, and pump beam 1 is mod-
ulated near the relaxation oscillation frequency of νrel ≈ 130kHz to induce chaotic
fluctuations in the array. Due to the coupling of the Nd:YAG lasers, the intensity
time series of laser 1 (a) and laser 2 (b) show matched fluctuations. The x-y synchro-
nization plot (c) of the dynamics demonstrates the strength of the synchronization
as there are only minimal deviations from the diagonal.[72]
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Perhaps a more interesting question is “What will happen if the coupled lasers

display chaotic dynamics?”. In Ref. [72], the pump beam of laser 1 is modulated

near the relaxation oscillation frequency νrel ≈ 130kHz, resulting in chaotic inten-

sity fluctuations. With large separations, d > 1.2mm, laser 2 is unaffected and

continues steady state operation. Decreasing the separation to d = 0.75mm, hence

increasing the coupling strength to κ = 8.8 × 10−4, the two lasers are anti-phase

locked and demonstrate synchronized chaotic intensity fluctuations. Fig. 4.5 [72]

displays the intensity time series of the two lasers (a & b) and the x-y synchro-

nization plot (c), where the intensity of laser 2 is plotted against the intensity of

laser 1. A cursory inspection of the intensity time series reveals nearly identical

dynamical behavior, and is verified by the x-y synchronization plot where there are

only minimal deviations away from the diagonal in Fig. 4.5(c) [72].

4.1.5 Synchronization in a Model of Three Coupled Semi-

conductor Lasers

Numerically studying a nearest neighbor coupled array of three semiconductor diode

lasers Winful and Rahman in 1990 [73] found identical synchronization between the

outer two lasers of the array. Surprisingly, this synchronous relationship was not

observed between either side laser and the central laser. The model

dEj

dt
=

1

2

[
G(Nj) − τ−1

p

]
(1 − iα)Ej + iκ(Ej+1 + Ej−1), (4.16)

dNj

dt
= P − Nj

τs
− G(Nj)|Ej|2,

describes a linear array of laser elements where Ej is the complex slowly varying

electric field, G(Nj) is the real gain term that depends on the population inversion

Nj, and j is some integer. The level of nearest neighbor coupling is given by κ, α is

the line-width enhancement factor, and P is the pump rate. Note that in Nd:YAG

and most other solid state lasers, α = 0. The time scales of the laser are determined

by the photon lifetime τp ≈ 1ps and the population inversion decay time τs ≈ 2ns

[73]. Notice that these typical semiconductor laser time-scales are far faster than
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Figure 4.6: Synchronized chaotic dynamics of a simulated three element semicon-
ductor diode laser array. The field amplitude times series X1, X2, and X3 (a) are
studied with coupling of η = 10−3.5. Synchronization is observed between the outer
pair, X1 and X3 (b), but not between X1 and X2 (c). Here the system is simulated
with p = 0.05, T = 2 × 103, and α = 5. [73]

those present in Nd:YAG lasers, resulting in quickly evolving intensity dynamics in

the semiconductor case.

Transforming variables to obtain a real, unitless system of equations, we find

dXj

dτ
= ZjXj − η[Xj+1 sin(φj − φj+1) −Xj−1 sin(φj−1 − φj)],

T
dZj

dτ
= p− Zj − (1 + 2Zj)X

2
j , (4.17)

dφj

dτ
= αZj − η

[Xj+1

Xj

cos(φj − φj+1) +
Xj−1

Xj

cos(φj − φj−1)
]
.

Here, τ is the reduced time variable, normalized to the photon lifetime, Xj =
√

0.5gτs|Ej | is the normalized, real field amplitude, Zj = 0.5gNthτp(Nj/Nth − 1)

is the normalized population inversion, and φj is the real phase of the complex field

Ej. We have used the definition g = δG/δN , the differential gain, and Nth is the

threshold population inversion that permits lasing action. The scaled pumping rate

is given by p = 0.5gNthτp(P/Pth−1), η = κτp describes the coupling, and T = τs/τp.

[73]

The authors restrict the array to three identical coupled lasers, increasing the

coupling beyond the threshold value of η = 10−4.43, where the laser array shifts

from steady state operation to periodically pulsing dynamics. Through a series of

period doubling bifurcations, the individual lasers become chaotic. Throughout this
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cascade, the outer pair of lasers remain synchronized. In Fig. 4.6(a) [73] we see the

chaotic field amplitudes of the three lasers with η = 10−3.5, p = 0.05, T = 2 × 103,

and α = 5. By examining the x-y synchronization plots of the outer pair (X1 and

X3) Fig. 4.6(b) we verify perfect synchronization; however the relationship of laser

1 with laser 2 does not show this synchronicity, Fig. 4.6(c).

4.2 Experimental Setup

To study the intensity and synchronization dynamics of a loss modulated linear three

laser array, we constructed the experimental system shown in Fig. 4.7 [17]. The laser

array consists of three parallel, linearly separated neodymium doped yttrium alu-

minum garnet (Nd:YAG) lasers (λ = 1064nm) formed in a single crystal 5mm in

length and diameter. The laser crystal is doped such that it has a 1% concentration

of Nd3+ by weight. A high power argon ion laser (λ = 514.5nm, TEM00) serves as

the optical pump source, and is divided into three equal intensity beams using the

zeroth- and first-order modes of a custom designed fan-out grating donated by Dig-

ital Optics Corporation. Only negligible intensities are found elsewhere. The three

Ar+ laser beams are focused and positioned using a simple refracting microscope,

constructed from antireflection coated lenses with focal lengths of f l1 = 19mm and

f l2 = 100mm. The resulting configuration is three equal intensity Ar+ lasers paral-

lel to and symmetric about the axis of the YAG rod. The pump beams have waists

of wo ≈ 20µm in the YAG crystal. A Coherent Innova 200-15 argon ion laser (15W

multi-line and 6.5W single line, λ = 514.5nm) is used as the pump source.

The end-pumped Nd:YAG laser cavity consists of the doped YAG rod with a

dielectric, high reflection coating evaporated onto one end, an intra-cavity acoustic-

optic modulator (AOM) (IntraAction Corp. Model AQS-271AG15 AOM driven at

27MHz with a IntraAction Model ME-27D driver), and flat output coupler (OC)

with 2% transmittance. The sum power of the three pump beams is approximately

5W . Beyond allowing us to uniformly loss-modulate the linear laser array, the AOM
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Figure 4.7: Experimental configuration to study the intensity and synchronization
dynamics of a linear array of three laterally coupled chaotic lasers generated in a
single Nd:YAG rod. The rod is optically end-pumped with three equal intensity
argon-ion laser beams. The beams are formed using a diffractive optic element
(DOE) where essentially all the power is transmitted to the zeroth- and first-order
modes. The separation d of the array of pump beams is controlled using the simple
microscope formed by lenses L1 and L2, with focal lengths of 19mm and 100mm,
respectively. The Nd:YAG crystal has a high reflection coating on the input side,
and an anti-reflection coating on the other. The output coupler (OC) has a 2%
transmittance. The intra-cavity acousto-optic modulator (AOM) is used to loss
modulate the laser array and serves as a thick étalon. The individual intensity
dynamics of the three coupled lasers are sampled with three fast photodetectors
(PD1, PD2, and PD3) and recorded using a digital sampling oscilloscope (DSO).
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serves as a thick étalon. It’s orientation in the laser cavity is adjusted to ensure single

longitudinal mode operation, which is verified using a confocal scanning Fabry-Pérot

interferometer (Burleigh SA-200-A with a free spectral range of 2GHz and a finesse

of 200). With these system parameters, the relaxation oscillation frequency of the

Nd:YAG lasers is νrel = 140kHz.

Thermal lensing due to the high intensity pump beams allows the generation of

three separate stable cavities in a single Nd:YAG rod [55, 83, 70]. The three TEM00,

λ = 1064nm lasers possess waists of wo ≈ 200µm. Each laser is separated from its

nearest-neighbor(s) by d = 0.64mm; hence, significant coupling is only possible for

nearest-neighbor Nd:YAG lasers, and there is no overlap of the pump laser fields.

Laser separations and dimensions are measured directly using a photodiode with

a rotating slit-aperture (Photon Inc. 1080-10 BeamScan). In this configuration,

even without modulation, the infrared lasers display intermittent instabilities due

to resonance of the optical phase dynamics with the relaxation oscillations of the

laser array [71].

As the stability of the Nd:YAG cavity is provided by thermal lensing, ac-

tive temperature control of the laser crystal is necessary. This was provided by

a temperature controller donated by Spectra-Physics in conjunction with a 10kΩ

thermistor (Techno Sfernice, Inc. Model 10TCJ103) and two Melcor FCO, 6-12-05

thermo-electric coolers.

The laser radiation transmitted by the output coupler is a mixture of the green

pump beams and the infrared lasers. The remnants of the pump laser are removed

with an absorptive Schot glass notch filter (Earling Corp.). The Nd:YAG lasers

are isolated by a series of non-polarizing beam-splitting cubes and 90o prisms. The

complex intensity dynamics of the individual infrared lasers are recorded simulta-

neously at 12.5 × 106samples/sec with three fast photodiodes (Liconix 40D) and a

four channel digital sampling oscilloscope (Lecroy 7200).

61



4.3 Synchronization of a Three Laser Array

The dynamics of individual lasers in the array depends on the depth of loss modula-

tion due to the AOM. With the addition of this dynamic element into the Nd:YAG

laser cavity, we now write the time varying loss term in the field equation as

εn(t) = εo + εmod sin(2πνmodt), (4.18)

where εo ≈ 0.17 is the intrinsic cavity loss for a given laser in the array (n = 1, 2, 3),

νmod = 166kHz is the modulation frequency, and εmod is the amplitude of the mod-

ulation. Fig. 4.8 displays the intensity dynamics of laser 1 with a sample of modu-

lation strengths, εmod. The additional degree of freedom provided by the coupling

allows chaotic, intermittent intensity fluctuations even in the unmodulated laser ar-

ray (top intensity time series, Fig. 4.8). Softly modulating the losses of the cavity

at νmod = 166kHz, the coupled laser displays sustained chaotic dynamics (middle

intensity time series, Fig. 4.8). We define soft modulation as a modulation level

that never induces enough losses in the cavity to prohibit lasing action. The time

series presented was modulated with εmod = 0.07. Hard modulation is therefore loss

modulation that is deep enough to preclude lasing action and leads to Q-switched

pulse dynamics (bottom intensity time series, Fig. 4.8). The hard modulation time

series corresponds to a modulation of εmod = 0.23.

While the various levels of loss modulation lead to striking differences in the

behavior displayed by the individual lasers they always display similar synchronous

relationships. The experimental measurements of all three lasers with soft loss

modulation shown in Fig. 4.9 exemplify this synchronization. The three lasers are

simultaneously sampled every 80ns for 25000 samples, covering a span of 2ms.

The chaotic intensity time series of the individual lasers of the array are plotted

in Figs. 4.9(a-c) with their corresponding power spectra plotted directly below in

Figs. 4.9(d-f) respectively. Upon inspection, it is clear the two outer lasers (1 &

3) are nearly identical to each other, but distinctly different from the central beam

(laser 2). This observation is confirmed with xy-synchronization plots of the laser

dynamics, Figs. 4.9(g-i). Fig. 4.9(h) shows the nearly identical synchronization
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Figure 4.8: Intensity dynamics of the laser array depend on the loss modulation
strength. Intermittent complex fluctuations are seen with No Modulation due to the
interactions within the coupled laser array. Sustained chaotic behavior is observed
with Soft Modulation and the system shifts to Q-switched pulsed dynamics with
Hard Modulation.

between the outer pair of lasers. These lasers are only able to interact through the

central laser, which, in Figs. 4.9(g & i) reveals no easily discernable relationship

with laser 1 or laser 3.

We find differences between the power spectra of the side and central lasers as

well, Fig. 4.9(d-f). It is interesting to note the harmonic relationships between the

side lasers, 1 and 3, and the central beam, laser 2. The dominant peak for lasers

1 and 3 is at ν = 80kHz. The dominant peak in laser 2’s power spectrum is at

ν = 140kHz, a peak missing in the two side lasers’ power spectra. All three lasers

display sharp peaks at νmod = 166kHz.

The intensity time series dynamics of all three lasers is numerically estimated

to be five dimensional, Fig. 4.10, using the false nearest neighbor method [3]. The

intensity times series utilized contain 25000 data points spanning 2ms. The em-

bedding delay time of τ ≈ 2.2µs is determined from the first minima of the aver-

age mutual information of the intensity time series [3]. This dimensional estimate
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Figure 4.9: Chaotic intensity dynamics of the three laser array with soft loss mod-
ulation (εmod = 0.07). Intensity time series (a-c) of the individual lasers and their
respective power spectra (d-f). Peak at 166kHz in all three power spectra is due to
loss modulation at this frequency. The two side lasers (1 & 3) demonstrate striking
similarities to each other, and distinct differences from the central laser (2). The
synchronicity of the outer laser pair is shown by plotting laser 1 vs. laser 3 (h). The
xy-synchronization plots of the side lasers with the central beam (g&i) do not show
any obvious relationship.
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Figure 4.10: Using the false nearest-neighbors method, we numerically estimate
the dimensionality of the experimental system, using measured time series of the
intensity fluctuations. The 1% level of false nearest neighbors suggests the system is
five dimensional, giving good agreement between the experiments and the dimension
of the amplitude anti-synchronized subspace, Table 4.1.
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agrees with the dynamically invariant state labeled amplitude anti-synchronized in

Table 4.1, corresponding to a system with amplitude synchronization and equal left

and right detunings present.

4.4 Equations of Motion

The equations describing the time evolution of the slowly varying complex electric

field amplitude En and the real gain Gn of laser n = 1, 2, 3 in a linear array of three

spatially coupled, loss modulated single-mode class-B lasers are similar to those

discussed in Sections 4.1.1 and 4.1.4, [72]. The extension to a three laser array is

dE1

dt
= τ−1

c [(G1(t) − ε(t))E1(t)− κE2(t)] + iω1E1(t),

dG1

dt
= τ−1

f (p−G1(t) −G1(t)|E1(t)|2),

dE2

dt
= τ−1

c [(G2(t) − ε(t))E2(t)− κ(E1(t) +E3(t))] + iω2E2(t), (4.19)

dG2

dt
= τ−1

f (p−G2(t) −G2(t)|E2(t)|2),

dE3

dt
= τ−1

c [(G3(t) − ε(t))E3(t)− κE2(t)] + iω3E3(t),

dG3

dt
= τ−1

f (p−G3(t) −G3(t)|E3(t)|2).

Time scales in the coupled laser equations are determined by the cavity round-

trip time, τc = 0.4 − 0.5ns, and the fluorescence time of the upper lasing level of

Nd3+, τf = 240µs. Coupling between the lasers in the array is calculated from the

overlap integral of adjacent beams’ electric fields, Eqn. (4.5), and is given by κ ≡

exp(−d2/2w2
o ). Here, κ is normalized to unity for separation d = 0 and a Gaussian

intensity profile where wo is the 1/e radius of the electric field amplitude. The

negative sign preceding κ follows from the observed π optical phase shift between

nearest neighbor beams, as seen in Fig. 4.2. The level of optical pumping p is

constant for all three lasers, while the modulated cavity loss is given by εn(t) =

εo + εmod sin(2πνmodt), where νmod = 166kHz is the loss modulation frequency. The

intrinsic cavity loss is εo ≈ 0.17 and the level of loss modulation εmod is dependent
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on the strength of the signal driving the intra-cavity AOM. ωn is the detuning of

laser n from a common cavity mode.

We now follow the analysis of Eqn. (4.19) performed by Dr. John Terry and

reported in Ref. [17]. While we only consider the loss modulation case here, the

analysis that is presented is equally valid for a pump modulated laser array.

We first let En = Xn exp[iφn], where Xn is the real amplitude and φn the real

phase of the complex electric field of laser n. Time is scaled to the round-trip time τc.

We subsequently introduce the change of variables ΦL = φ2 −φ1 and ΦR = φ2 − φ3,

and ΩL = ω2−ω1 and ΩR = ω2−ω3. With these definitions and changes of variables

we rewrite Eqn. (4.19) as a system of eight real ordinary differential equations

dX1

dt
= [F1 − ε1(t)]X1 − κX2 cos(ΦL),

dF1

dt
= γ(A− F1 − F1X

2
1 ),

dX2

dt
= [F2 − ε2(t)]X2 − κ(X1 cos(ΦL) −X3 cos(ΦR)),

dF2

dt
= γ(A− F2 − F2X

2
2 ),

dX3

dt
= [F3 − ε3(t)]X1 − κX2 cos(ΦR), (4.20)

dF3

dt
= γ(A− F3 − F3X

2
3 ),

dΦL

dt
= ΩL + κ

[(X2

X1

+
X1

X2

)
sin(ΦL) +

X3

X2

sin(ΦR)
]
,

dΦR

dt
= ΩR + κ

[(X3

X2

+
X2

X3

)
sin(ΦR) +

X1

X2

sin(ΦL)
]
.

Here Fn is the real gain, γ = τc/τf and A is the scaled pump rate.

The issue of synchronization between the two outer lasers may be addressed

by introducing the sum and difference variables of these lasers and assuming that

all three lasers are equally detuned, i.e., ΩL = ΩR = 0. Introducing an additional

change of variables X+ = 0.5(X1 + X3), X− = 0.5(X1 − X3), F+ = 0.5(F1 +

F3), and F− = 0.5(F1 − F3), synchronization between the two outer lasers occurs

when X− = F− = 0 in the non-trivial case of X+, F+ 6= 0, i.e. the lasers are

operating and the electric field amplitudes and gains of the outer pair are identical.
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Symmetry Representative point Dim. Name
Z2(ξ) × Z2(µ)00 (X+, F+, X2, F2, 0, 0, 0, 0) 4 synchronized
Z2(ξ) × Z2(µ)ππ (X+, F+, X2, F2, 0, 0, π, π) 4 anti-synchronized
Z2(µξ) (X+, F+, X2, F2, 0, 0, φ,−φ) 5 amplitude

anti-synchronized
Z2(µ)00 (X+, F+, X2, F2, X−, F−, 0, 0) 6 optical

phase synchronized
Z2(µ)ππ (X+, F+, X2, F2, X−, F−, π, π) 6 optical

phase anti-synchronized

Table 4.1: Dynamically invariant subspaces contained in Eqn. (4.20), a symmetric
array of three nearest neighbor, evanescent field coupled lasers. Experimental mea-
surements correspond to the dimension 5, amplitude anti-synchronized subspace.

The transformed system is equivariant under the action of the symmetries

ξ(X+, F+, X2, F2, X−, F−,ΦL,ΦR) = (X+, F+, X2, F2,−X−,−F−,ΦL,ΦR),

corresponding to the exchange of the outer pair of lasers, and

µ(X+, F+, X2, F2, X−, F−,ΦL,ΦR) = (X+, F+, X2, F2, X−, F−,−ΦL,−ΦR),

corresponding to taking the complex conjugate of the electric fields of all three lasers

in the array.

There is also a parameter symmetry involving the coupling parameter κ,

(κ,ΦL,ΦR) → (−κ,ΦL + π,ΦR + π) which adds π to the phase of the middle laser

while reversing the sign of κ. It is interesting to note that all three lasers are phase

synchronized when κ is negative, corresponding to ΦL = ΦR = 0, and only the two

outer lasers are synchronized when κ is positive. The second case of a positive κ

corresponds to the experimentally observed case of the nearest neighbor pairs of

lasers locked π out of phase.

From these symmetries, the dynamically invariant subspaces cataloged in Ta-

ble 4.1 exist. Notice the five-dimensional subspace labeled ‘amplitude anti-synchronized’,

corresponding to the case where the µ symmetry has been broken through equal de-

tuning of the two outer beams from a common cavity mode. This subspace agrees

with the dimensionality of the experimental system as determined by the false near-

est neighbor method, Fig. 4.10, and the synchronization and anti-phase locked state
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observed, and supports our assumptions of the parameter regimes considered.

Note that although there are several invariant subspaces where the phases of

all three lasers are locked, there are no invariant subspaces forced by symmetry such

that all the amplitude and gains are equal, X+ = X2 and F+ = F2. We may examine

this synchronization state using two approaches: first, by examining the set of such

points in the phase space and showing that it is not invariant as in Ref. [84], and

second, by reducing the system of three lasers to one of two lasers with unequal

coupling.

To this end, we define the manifold

M12 = {(X1, F1, X2, F2, X3, F3,ΦL,ΦR) : X1 = X2, F1 = F2 : & : ΦR = 0, π},

(4.21)

corresponding to perfect (anti)synchronization between lasers 1 and 2 in terms of

the original variable.

4.4.1 Instability of Central-Side Laser Intensity Synchro-

nization

In the case of coupling κ 6= 0 between the laser array, a trajectory can only be in

M12 instantaneously, by assuming that X1 and X2 are nonzero and examining the

evolution of their difference, x− = 0.5(X1 −X2), and sum, x+ = 0.5(X1 +X2). The

time differential equation for x− is then given by

dx−
dt

=
F1 + F2

2
x− +

F1 − F2

2
− ε(t)x− + κx− cos(ΦL) +

1

2
κX3 cos(ΦR). (4.22)

If the system state lies on M12, this means that x− = 0 and F1 = F2; so the

trajectory at this point will obey

dx−
dt

=
1

2
κX3 cos(ΦR). (4.23)

Thus, the trajectory must leave M12, unless κ = 0, X3 = 0, and/or ΦR = π/2 + jπ,

where j is some integer. As we are interested in the study of a coupled laser array,
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we assume κ 6= 0. In the case of X3 = 0,

dX3

dt
= −κX2 cos(ΦR), (4.24)

and so X3 always exits M12, as we have defined the subspace such that ΦR = 0, π.

Hence, no trajectories are supported by the subspace as long as there is nonzero

coupling and field amplitudes between and for the three lasers of the array.

4.4.2 Reduction to a Two Laser Array with Asymmetric

Coupling

We consider only amplitude synchronized subspaces similar to that observed exper-

imentally where the two side lasers (1 & 3) are synchronized. Then X1 = X3 and

F1 = F3, and we may reduce the array of eight, real coupled ordinary differential

equations describing the coupled three laser array, Eqns. (4.20), to a set of five

coupled equations describing a two laser array with asymmetric coupling.

dX1

dt
= [F1 − ε(t)]X1 − κX2 cos(Φ),

dF1

dt
= γ(A− F1 − F1X

2
1 ),

dX2

dt
= [F2 − ε(t)]X2 − 2κX1 cos(Φ), (4.25)

dF2

dt
= γ(A− F2 − F2X

2
2 ),

dΦ

dt
= κ

(X2

X1

+ 2
X1

X2

)
sin(Φ).

While the loss is uniform for the reduced two laser system, the influence of laser

1 (‘side’ laser) on laser 2 (‘central’ laser) is double of that in the reverse direction.

Redefining the sum and difference variables for the reduced laser system, X− =

0.5(X1 −X2), X+ = 0.5(X1 + X2), F− = 0.5(F1 − F2), and F+ = 0.5(F1 + F2), we
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now find the transformed system of equations

dX+

dt
= X+[F+ − ε(t)] + F−X− − κ cos(Φ)(3X+ + X−),

dF+

dt
= γ[A − F+(1 + X2

+ +X2
−) − 2F−X−X+],

dX−

dt
= X−[F− − ε(t)] + F+X+ + κ cos(Φ)(3X− + X+), (4.26)

dF+

dt
= γ[A − F−(1 + X2

+ +X2
−) + 2F+X−X+],

dΦ

dt
=

3

(
X2

+ + 2
3
X+X− + X2

−

)

X2
+ −X2

−
κ sin(Φ).

Examining the synchronized case, we find that

dX−

dt
= κ cos(Φ)X+,

dF−

dt
= 0, (4.27)

dΦ

dt
= 3κ sin(Φ).

In the interesting case of nonzero coupling with the two lasers operating above

threshold, κ 6= 0 and X+ 6= 0, and X− quickly moves away from 0 in the experimen-

tally observed case of a phase difference of Φ = π between nearest neighbor lasers.

Note that this is a fixed point for Φ. Even in the general case where X− has a zero

differential, cos(Φ) = 0 then Φmodπ = π/2, the resulting differential

dΦ

dt
= 3κ (4.28)

would drive the reduced laser array out of synchronization. Therefore synchroniza-

tion of the asymmetrically coupled two laser array is not observed, and thus not

present in the original three laser array.
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4.5 Comparison of Numerical and Experimental

Results: Pump Modulation

While the previous analysis considered a loss modulated laser array, the conclusions

are equally valid in the case of pump modulation [85]. Experimentally, we sim-

ply remove the acousto-optic modulator from inside the cavity, and place it in the

path of the argon ion pump laser before the fan-out grating. In this way, all three

pump beams are modulated equally. Pump modulation is considered numerically

by allowing the pump term p(t) to vary in time, giving the real gain expression

dGn

dt
= τ−1

f (p(t)− Gn − Gn|En|2) (4.29)

replacing the gain expression in the class-B laser Equations (4.19). The pump

modulation is given by the expression p(t) = po + pmod sin(2πνmodt), where νmod =

100kHz is chosen to be near the relaxation oscillation frequency of the lasers in

order to induce chaotic intensity fluctuations. The loss term ε in the complex field

expressions Eqns. (4.19) is now constant and equal to the intrinsic cavity loss εo.

Experimental measurements of the pump modulated laser array display similar

dynamics and relationships as those observed in the loss modulated case. Fig. 4.11

displays the intensity time series of the three coupled lasers (a-c) and their x-y

synchronization plots (d-f). Nearly identical synchronization is observed between

the two side lasers (Figs. 4.11(a, c & e)), while no clear relationship between the side

and central lasers is observed. The depth of the pump modulation, is pmod = 0.20 for

all three beams. The nearest neighbor separations are approximately d = 0.975mm.

Numerical integration of the pump modulated three laser array was carried

out using a Runge-Kutta integrator with a variable time step. The results of this

integration is displayed in Fig. 4.12. The simulated intensity time series of the laser

array are shown in Figs. 4.12(a-c) with their corresponding x-y synchronization plots,

Figs. 4.12(d-f). In good agreement with the experimental results for both loss and

pump modulation we again observe identical synchronization between the two side

lasers, Fig. 4.12(e), and no obvious relationship with the center laser, Figs. 4.12(d
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Figure 4.11: Experimental measurements of the relative intensities of three coupled
lasers with pump modulation and nearest neighbor separations of d = 0.975mm.
The intensity time series of the three lasers, (a-c), display sustained chaotic fluctua-
tions. The x-y synchronization plots of the three times series, (d-f), displays a high
degree of intensity synchronization only between lasers 1 and 3, (a). [17]
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Figure 4.12: Results of numerical integration of the three Nd:YAG laser array model
with pump modulation. The intensity time series of the three lasers, (a-c), display
sustained chaotic fluctuations as the pump modulation rate νmod = 100kHz was
chosen to be close to the relaxation oscillation frequency of the coupled lasers. The
x-y synchronization plots of the three times series, (d-f), display a high degree of
intensity synchronization only between lasers 1 and 3, (a). [17]
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& f).

4.6 Discussion

Strong synchronization has been found in experimental and numerical observations

between the pair of outer lasers in the three laser array (1 & 3), without any clear

relationship of these side lasers with the central laser (2). The dominance of this dy-

namic state has been explained by analyzing the equations of motion, Eqns. (4.19),

of the nearest neighbor coupled linear laser array. Winful and Rahman observed

similar behavior in a model of three coupled semiconductor lasers [73]. Addition-

ally, experimental measurements and observations of the dynamics agree with the

dimension five, amplitude anti-synchronization subspace found in the analysis of

Eqns. (4.19).

Despite the strong agreement of our experimental, numerical and analytic re-

sults, we are still left with the question of how the central laser is related dynamically

to the two side lasers. As the linear laser array is constructed such that only nearest

neighbors are coupled, the synchronization of side lasers depends on the mediation

of the central laser. The relationship of a side laser and the central laser is a more

general form of synchronization, and requires a more subtle analysis of the dynamics

to uncover this relationship. In Section 5.2, we examine the nature of this interaction

using a Gaussian frequency filtered analytic signal phase. The shifting nature of the

laser dynamics with increasing strengths of loss modulation and their entrainment

to the sinusoidal modulation signal is studied in Section 5.1.
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Chapter 5

Entrainment and Phase Synchronization in a

Three Laser Array

5.1 Entrainment of Chaotic Dynamics

5.1.1 Introduction

Perhaps the most famous characteristic of chaos is the sensitive dependence of

chaotic systems on initial conditions and to small perturbations, as we discussed

in Section 2.1. This defining property makes it impossible to predict the behavior of

a chaotic system over long time periods. An interesting and surprising result of this

sensitivity is the possibility of controlling chaotic dynamics with specific perturba-

tions. A technique to control chaotic systems based only on the observed dynamics

of a system was advanced in 1990 by Ott, Grebogi, and Yorke [86]. Known as

OGY, the control technique was implemented in a number of experimental systems
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including stabilizing the dynamics of a frequency doubled Nd:YAG laser [87], and

returning an arrhythmic rabbit heart to periodic behavior [88, 89].

A more common and conceptually simpler method of maintaining healthy

heart function is using a periodic signal from an implanted pacemaker to ensure

regular beating. In such a situation, the contractions of the heart are entrained

to the pace-maker output. A somewhat exotic, well studied example of complex

synchronization and entrainment is exhibited by large assemblies of male fireflies

in parts of South-East Asia that will flash in unison to attract a female. Ref. [90]

provides a review of firefly synchronization research. When exposed to a light flash-

ing at a frequency close to its natural repetition rate of 0.9s a firefly will become

entrained to the artificial flashing [91]. However, if the period of the perturbing

flashes is too far removed from the natural pace of the firefly, then only intermittent

periods of entrainment, interspaced with 2π phase slips, are observed [91].

Phase entrainment to a periodic signal has been reported for deterministically

chaotic systems. Originally recognized in an experimental study [41], theoretical

studies of the Rössler [92] and Lorenz systems [93, 94] have been conducted as well.

Recently, entrainment of homoclinic chaos in a CO2 laser (a Class-B laser) [95] to

sinusoidal loss modulation was demonstrated [96].

5.1.2 Loss Modulation Entrainment

As we saw in the previous chapter, the dynamics of individual lasers in the array

depends on the depth of the loss modulation due to the acousto-optic modulator

(AOM). With the addition of this dynamic element into the Nd:YAG laser cavity,

we now write the time varying loss term in the field equation as

εn(t) = εo + εmod sin(2πνmodt), (5.1)

where εo ≈ 0.17 is the intrinsic cavity loss, the array index array n = 1, 2, 3, νmod =

166kHz is the modulation frequency, and εmod is the amplitude of the modulation.

Fig. 4.8 displays the intensity dynamics of laser 1 with a sample of modulation
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Figure 5.1: Power Spectra for laser 1 of the array with No Modulation (a), Soft
Modulation εmod = 0.07 (b), and Hard Modulation εmod = 0.23 (c). Both (b) and
(c) display strong peaks at νmod = 166kHz.

strengths, εmod. The additional degree of freedom provided by the coupling allows

complex, intermittent intensity fluctuations even in the unmodulated laser array

(top intensity time series, Fig. 4.8).

The loss modulation of the laser array results in a shift of dynamics in fre-

quency space, as well as in the nature of the intensity time series. Simply examining

the power spectra, Fig. 5.1, of the three time series, we witness the effect increas-

ing loss modulation has on the laser dynamics. Figs. 5.1(a), (b) and (c) display

the power spectra for unmodulated, soft modulated (εmod = 0.07) and hard mod-

ulated (εmod = 0.23) infrared laser intensity time series respectively. In addition

to a more uniform spectral profile with modulation, we easily see a sharp peak at

νmod = 166kHz, indicating the possibility of phase entrainment of the dynamics to

the sinusoidal modulation.

By examining the spectrogram representations of the frequency content of

these intensity time series, Fig. 5.2, we gain additional insight into how loss mod-

ulation affects the dynamics of the laser array. Here we have calculated the power

spectra of successive segments of 2500 points, or 0.2ms, of the intensity time series

in question. The resulting spectra are formed into a matrix, allowing us to view the

intensity spectral evolution in time. Here color represents the Log10 of the power

contained in a frequency component – horizontal axis – at a given time – vertical

axis. A simple bilinear interpolation between the vertices of the resulting pixels is
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used to simulate improved resolution.

Consistent with Fig. 4.8, the unmodulated spectrogram Fig. 5.2(a) displays a

shifting power spectrum during the course of the measurement. The high power red

band in Fig. 5.2(a&b) correspond to natural frequency peaks of the Nd:YAG laser.

The soft loss modulated spectrogram Fig. 5.2(b) displays a more consistent spectrum

in time, corresponding to the relatively sustained chaotic behavior observed in the

intensity time series. Additionally, a dramatic high power red streak at νmod =

166kHz is apparent, evidencing the Nd:YAG frequency response and perhaps phase

entrainment to the modulation signal. The spectrogram of the hard modulated laser

dynamics Fig. 5.2(c) is relatively constant in both frequency and time, although a

streak at νmod is still easily seen.

To determine if phase entrainment to the sinusoidal modulation signal is

present, as well as the observed frequency entrainment and a shift in laser dynamics,

it is necessary to identify a phase marker and compare its behavior in time to the

rotating phase of the 166kHz modulation signal. Peaks in the laser intensities –

defined by maxima of the dynamics above the mean of the signal – are a physically

obvious choice for the phase marker. By tracking the location of the peaks in time

relative to the phase of the modulation signal we observe a significant confinement of

the phase locations of the peaks in the modulated time series. Peak phase location

is simply defined as peaktime × 166kHz × 2π.

Fig. 5.3 displays infrared laser intensity time series with identified peaks and

their phase histograms. Figs. 5.3(a), (b) and (c) display intensity time series of laser

1 of the coupled laser array with no modulation, soft modulation and hard mod-

ulation respectively. Due to the Q-switched nature of hard loss modulated lasers

the mean of the dynamics rests relatively close to the minimum intensity shown in

Fig. 5.3(c). The peaks of the laser intensities are indicated with open diamonds.

The phase histogram for the unmodulated laser, Fig. 5.3(d) has a nearly uniform

distribution. The histogram for the soft modulated laser, Fig. 5.3(e), displays sig-

nificant confinement of the phase location of the intensity time series peaks, and

hence phase entrainment of the laser to the 166kHz sinusoidal modulation signal.
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Figure 5.2: Spectrograms for the unmodulated (a), soft loss modulated (b) and
hard modulated (c) coupled Nd:YAG laser dynamics. The modulated plots display
frequency entrainment to the modulation frequency νmod = 166kHz as well as a
more consistent power distribution in time and frequency.
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The hard modulated peak phase location histogram, Fig. 5.3(f) evidences an even

greater degree of phase entrainment.

A quantitative measure Q of phase entrainment is easily obtained from the

normalized entropy S of the peak phases and is defined by

Q ≡ 1 − S,

where (5.2)

S = −
∑N

l=1 PllnPl

lnN
.

Here, Pl is the probability that a peak phase will be found in bin l. The normalization

factor ln(N), where N is the number of bins, normalizes the Shannon entropy to

1. Hence, Q ranges from 0, for no entrainment, to 1, indicating perfect phase

entrainment to the modulation signal.

Using Eqn. (5.2) we are able to study phase entrainment as a function of the

loss modulation strength. Fig. 5.4 demonstrates the approximately linear increase

in phase entrainment with an increasing modulating signal strength. Each filled

diamond represents the phase entrainment value for one of three repeated mea-

surements. Soft modulation time series plotted above correspond to a modulation

strength of εmod = 0.07, while the hard modulation time series were obtained with

a modulation of εmod = 0.23.

5.2 Phase Synchronization

Recently, a weak form of synchronization, phase synchronization, has been shown to

be a useful tool for the analysis of chaotic signals arising in a variety of situations.

Phase synchronization of chaos was originally pointed out by Pikovsky [41] and

Stone [42] for the case of a chaotic oscillator perturbed by an external periodic signal,

similar to the entrainment studied in the previous section. More recently, the idea

of phase synchronization between coupled chaotic oscillators has been introduced

[97], choosing coupled Rössler attractors [23] as a test system. We review this work
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Figure 5.3: Loss modulation of the Nd:YAG laser array leads to phase entrainment
of the laser dynamics to the sinusoidal modulation signal. Intensity time series of
laser 1 of the coupled array with No Modulation (a), Soft Modulation (b), and Hard
Modulation (c) are shown with their peaks identified with hollow diamonds. It is
straightforward to calculate the value of a phase rotating at νmod = 166kHz at
each peak. A histogram of the unmodulated laser peak phases (d) shows a nearly
uniform distribution. The soft modulated laser peak phase histogram (e) is angularly
confined, displaying phase entrainment to the loss modulation signal. Phases of the
hard modulated laser peaks (f) shows and even greater degree of phase entrainment.
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Figure 5.4: Phase entrainment increases monotonically with modulation strength.
Measurements at each modulation value were repeated three times.

below. This concept has proven to be very useful, especially in the analysis of

biological data (e.g., Ref. [98]). Experimental observation of phase synchronization

in chaotic physical systems has been recently reported [96, 99, 100]. For a review of

research in phase synchronization of chaos see Ref. [16, 23].

5.2.1 Phase Synchronization of Rössler Attractors

Inspired by the stretching and folding action of a taffy-pulling machine Otto Rössler

developed a system of three ordinary differential equations [23, 2]

ẋ = −y − z,

ẏ = x+ ay, (5.3)

ż = b+ z(x − c),

which define a particularly simple attractor with a single xz quadratic nonlinearity.

In this system, the over-dot (·) indicates a differential with respect to time, and a,

b and c are constant system parameters. Integrating these equations in the case of

a = b = 0.2 and c = 5.7 and projecting the dynamics onto the xy-plane we observe
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Figure 5.5: X-Y projection of Rössler attractor with a = b = 0.2 and c = 5.7. The
labels A and φ show possible, physically intuitive definitions of amplitude and phase
for the system. [2]

the particularly simple rotations performed by the system, Fig. 5.5 [2]. It is easy

to see how a phase φ and amplitude A may be defined for the system from these

rotations.

However, most experimental and numerical systems do not possess such easily

defined phases. Hence, Rosenblum, Pikovsky and Kurths [97] choose to study the

relative phase dynamics of two coupled Rössler attractors using an equivalent phase

derived from the complex analytic signal V (t) originally advanced by Gabor [101],

V (t) = x(t) + ixH (t) = A(t)eiφ(t), (5.4)

where x(t), xH(t), A(t), φ(t) ∈ R. One may calculate the analytic signal from any

real time series. Choosing the time series x(t), φ(t) is identical to that defined

in Fig. 5.5. However, the amplitudes in Fig. 5.5 and Eqn. (5.4) need not match.

The real and imaginary parts of the analytic signal are related through the Hilbert
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transform

xH (t) =
1

π
P

∫ ∞

−∞

x(t′)

t − t′
dt′, (5.5)

where P indicates the principle part of the integral. The system of two coupled,

nonidentical Rössler attractors are defined similarly to Eqn. (5.3)

ẋ1,2 = −ω1,2y1,2 − z1,2 + C(x2,1 − x1,2),

ẏ1,2 = −ω1,2x1,2 + ay1,2, (5.6)

ż1,2 = b + z1,2(x1,2 − c),

with the addition of the coupling and detuning parameters C and ω1,2 = 1 ± ∆ω,

respectively [97]. Choosing an initial detuning ∆ω = 0.015 and system parameters

a = 0.15, b = 0.2, and c = 10, we can examine the relative phase φ1 − φ2 of the

two systems as C is increased. Beginning with only minimal coupling, C = 0.01,

the two chaotic systems do not display phase synchronization as φ1 − φ2 increases

monotonically, Fig. 5.6(a) [97]. Increasing the level of coupling to C = 0.027, phase

synchronization is observed with intermittent jumps of 2π. Strong coupling C =

0.035 produces constant phase synchronization. However, the analytic amplitudes

A1,2(t), Eqn. (5.4), calculated from the x coordinates of the coupled attractors, do

not display any hint of synchronization even at this strong coupling value, Fig. 5.6(b)

[97].

For a review of research in phase synchronization of chaos see Ref. [16].

5.2.2 Definition of Phase from Array Intensities

While it is simple to identify identical synchronization of intensities as we did in

the previous chapter, it is much more difficult to discern relationships between the

dynamics of elements of the array that are not identically synchronized. Typical

experimental measurements record intensity time series without any determination

of the phases of the fields of the laser elements. The relative optical phases of the

array elements determine the intensity distributions in the far field (e.g. Fig. 4.2).

Phase dynamics and chaotic intensity time series were studied experimentally and
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Figure 5.6: The relative phase of two nonidentical, coupled Rössler systems for
unsynchronized, C = 0.01, intermittent phase synchronized C = 0.027, and phase
synchronized, C = 0.035, states (a). Even with relatively strong coupling and phase
synchronization the analytic amplitudes A1,2 remain chaotic and unsynchronized
(b).[97]
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numerically for two spatially coupled lasers [70, 72], where phase-locking was deter-

mined from the far-field intensity profile and through measurements of interference

fringe visibilities. It is difficult, however, to acquire and analyze dynamically evolv-

ing interference patterns at time scales comparable to those of the fluctuations of

the fields (microseconds or shorter). Therefore, it is important to define new, exper-

imentally accessible phase variables that will allow quantitative detection of phase

synchronization between the array elements.

We consider now, with some repetition of the previous Section, a fairly general

means by which a phase may be associated with a real scalar signal, I(t) [18].

Representing I(t) by its Fourier transform u(ν), I(t) = (2π)−1
∫∞
−∞ exp(iνt)u(ν)dν,

we note that the time variation of each Fourier component, u(ν)eiνt, is a complex

number whose phase continually increases (decreases) with time for ν > 0 (ν <

0). However, the symmetry of the Fourier components and the integration from

ν → −∞ to ν → ∞ eliminates the imaginary components and destroys the phase

information. Thus, one way to introduce a phase is to suppress the negative ν

components by replacing u(ν) by 2θ(ν)u(ν) (where θ(ν) is the unit step function,

θ(ν) = 1 for ν > 0 and θ(ν) = 0 for ν < 0). In this case we obtain a superposition

of rotating complex numbers all of which have increasing phase,

VA(t) = π−1

∫ ∞

0

eiνtu(ν)dν. (5.7)

Thus we may reasonably expect VA(t) to execute rotations in the complex plane with

continually increasing phase. The function VA(t) is Gabor’s ‘analytic signal’[101],

which has been recently introduced for the purpose of the study of phase syn-

chronization of chaos in Ref. [97]. Noting that the inverse transform of 2θ(ν) is

δ(t) + i
πP

1
t , we can express the analytic signal as

VA(t) = I(t) + iIH (t) = I(t) +
i

π
I(t)� P

1

t
, (5.8)

where IH (t) and I(t) are related by the Hilbert transform IH (t) = π−1P
∫∞
−∞ dt′I(t′)/(t−

t′), � denotes convolution, and P 1
t is the principal part of 1/t. Writing

VA(t)− 〈VA〉 = RA(t)eiΦA(t) (5.9)
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where RA(t) and ΦA(t) are real, and 〈VA〉 is the time average of VA(t), we call ΦA(t)

the analytic phase. Here we note that it is useful to consider more general choices. In

particular, we can replace u(ν) in the original Fourier transform by f (ν)u(ν), where

f (ν) is suitably chosen (Eqn. (5.8) corresponds to f (ν) = 2θ(ν)). Specifically, we

will be interested in the choice of a Gaussian for f (ν), f (ν) = exp[−(ν − νo)
2/2σ2];

this gives

VG(t) ≡
1

2π

∫ ∞

−∞
dνeiνte−

(ν−νo )2

2σ2 u(ν) = I(t)� F (t), (5.10)

where F (t) = σ(
√

2π)−1exp[−iνot+ σ2t2/2]. We then define a Gaussian phase by

VG(t) − 〈VG〉 = RG(t)eiΦG(t). (5.11)

The Gaussian’s center frequency νo and its width σ are parameters in the definition

of ΦG(t). Note that, like the choice f (ν) = 2θ(ν) resulting in the analytic signal,

the choice of a Gaussian again emphasizes positive frequencies (we take νo > 0). We

find that application of a frequency bandpass filter as in Ref. [98] produces similar

results for our data. Other choices that give previously mentioned means of defining

a phase are f1(ν) = 1 − ieiνT , yielding V (t) = I(t) − iI(t− T ), and f2(ν) = 1 + να

yielding V (t) = I(t) + iα dI(t)
dt . Again, both of these choices may be thought of as

emphasizing positive frequencies: |f2(ν)| > |f2(−ν)| for ν > 0 (we assume α > 0),

and for a spectrum peaked at ν ∼ π
2T

we note that f1(
π

2T
) = 2 while f1(− π

2T
) = 0.

Examining VA(t) and VG(t) from the same intensity time series we see imme-

diately the advantage of Gaussian filtering. In Fig. 5.7 the real part of an analytic

signal is plotted versus the imaginary part of the signal for both VA(t) (a) and VG(t)

(b). VA(t), Fig. 5.7(a), is obviously less symmetric, and close inspection reveals

multiple spurious rotations about an arbitrary point, causing phase slips of 2π, and

trajectories that pass through the center of rotation, causing slips of π. Choosing

a Gaussian filter with σ = 18kHz and νo = 80kHz, eliminates the most of these

occurences, providing a much improved definition of phase.

We find the Gaussian filtered phase superior for our purposes, and we believe

this may also be the case in other situations involving nonstationary, noisy time

series of limited duration. For our experimental data set, we have tested for phase
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Figure 5.7: Contrasting the analytic signal VA(t) (a) with the Gaussian filtered
analytic signal VG(t) (b) for a soft modulated laser we are able see how filtering will
provide an improved phase definition. VG(t) was determined with a filter centered at
νo = 80kHz and a standard deviation of σ = 18kHz. Angular position determines
phase.

synchronization using the phase definitions ΦA(t) and ΦG(t), as well as some others.

One could use other band-limited forms for f (ν) and obtain results similar to our

Gaussian choice. For example, we have found this is the case for f (ν) = (2σ)−1θ(σ−

|ν − νo|). In this case, we calculated V (t) by Fourier transforming I(t), replacing

u(ν) by f (ν)u(ν), and inverse transforming. In the case where the calculation is

done directly in time, via a convolution, the convolution is numerically easier to

perform for the Gaussian choice, since the Gaussian kernel is better localized in

time.

5.2.3 Phase Synchronization of a Three Laser Array

Using the definitions of ΦA,G(t) above, we are now able to study phase synchro-

nization between the individual lasers in the array [18, 19]. We know that the side

lasers (1&3) display identical synchronization, Fig. 4.9, so phase synchronization,

a comparatively weak form of synchronization necessary for identical synchroniza-

tion, is present. But what about the interaction of the outer lasers (1 & 3) with the
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central laser (2)? Will a phase variable derived from the intensity time series of the

individual lasers allow us to test for interdependence of these lasers? We concentrate

on lasers 1 and 2 for the remainder of this section and investigate their interaction

using the concept of phase synchronization.

In the previous section we introduced an analytic phase ΦA(t) and a Gaussian

filtered phase ΦG(t). To determine these variables from an experimental data set, we

generate VA,G(t) by first applying an appropriate fast Fourier transform algorithm

to I(t). The resulting u(ν) is multiplied by 2θ(ν), in the analytic case, or exp[−(ν−

νo)
2/2σ2] for the Gaussian filtered case, before applying the inverse fast Fourier

transform to obtain our complex signal V (t). VA,G(t) is then used to determine

ΦA,G(t) as defined in Eqns. (5.9 & 5.11). The phase variables are defined such

that they are continuous in time, i.e. ΦA,G(t) increases continuously in time and is

not discontinuously reset to 0 as it passes through 2π. In the Gaussian case, the

physical relevance of the phase is guaranteed by always choosing f (ν) such that

σ × duration of time series � 1.

Let us first examine the case of an unmodulated laser array. Phase synchro-

nization of an outer laser (1) and the central laser (2) with is determined by plotting

the relative phase, ∆Φ(t) ≡
(
Φ1(t) − Φ2(t)

)
/2π versus time. In Fig. 5.8(a), the

analytic signal relative phase ∆ΦA(t) varies over a broad range of values (≈ 130 ro-

tations), including discontinuous jumps, and only very limited flat regions. In short,

phase synchronization is not observed using the unfiltered analytic phases. However,

phase synchronization is observed plotting ∆ΦG(t) in Fig. 5.8(b). Nearly perfect

phase synchronization is observed with a Gaussian filter centered at νo = 140kHz

(solid line), while significant phase synchronization with intermittent phase slips is

seen with νo = 80kHz (dotted line). These values of νo were chosen because they

correspond to significant peaks in the power spectra of the lasers. This guarantees

the phases calculated correspond to dominant frequency components of the intensity

dynamics. In both cases σ = 15kHz. No synchronization was detected when one

of the component phases of ∆ΦG(t, νo = 140kHz, σ = 15kHz) was replaced with a

surrogate phase vector from another intensity time series sampled under identical
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Figure 5.8: Time series for relative phases of (a) ∆ΦA(t) and (b) ∆ΦG(t) for lasers 1
and 2 of the unmodulated laser array. Phase synchronization is not seen for ∆ΦA(t)
(a), but is easily observable for ∆ΦG(t) (b) with the Gaussian filter centered at νo =
140kHz (solid line). Intermittent phase slipping and synchronization is observed
with νo = 80kHz (dotted line). No synchronization is observed, as expected, when
Gaussian filtered surrogate phase is introduced as a replacement for one of the
component phases of ∆ΦG(t) with νo = 140kHz (dashed line). Here ∆Φ(t) =
(∆Φ1(t)−∆Φ2)/2π, and for all traces in (b) the Gaussian filter width is σ = 15kHz.
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Figure 5.9: Normalized probability distributions of ∆Φ(t) for laser arrays with no
modulation (a) and soft modulation (b). Gaussian filtered phases display strong
peaks (filled gray diamonds) while the analytic phases (filled black circles) show
only slight peaks in the distributions. The surrogate cases (open symbols) display
nearly uniform distributions. The Gaussian filter was defined with νo = 80kHz and
σ = 18kHz.

conditions (dashed line).

The dramatic effect of loss modulation, as well as the improved detection of

phase synchronization may be examined using the normalized probability distribu-

tion of the relative phases (∆Φ(t)mod1, where ∆Φ has already been normalized by

2π). Figure 5.9 displays results for the laser array with no modulation (a) and with

soft modulation (b). In both cases the Gaussian filtered (νo = 80kHz, σ = 18kHz)

relative phase (filled gray diamonds) displays the dominant peak, though it is larger

in the soft modulated case (b). The analytic signal relative phase (filled black cir-

cles) shows only slight peaks in the distributions. Relative phases calculated with

surrogate signals (open symbols) have nearly uniform distributions.

As in Section 5.1.2, when examining entrainment of the dynamics to the mod-

ulation signal, we are able to quantify the level of phase synchronization using the
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Figure 5.10: Phase synchronization of unmodulated laser 1 with laser 2 for frequency
ratios of νo(laser1) : νo(laser2) = 1:1 (a), 1:2 (b) and 2:1 (c), solid lines. Significant
1:1 phase synchronization occurs primarily between 125kHz and 200kHz (a), with
weaker and more restricted synchronization present at higher frequency ratios (b
& c). All synchronization measurements used a σ = 18kHz Gaussian filter. The
dashed lines represent synchronization results using surrogate time series.
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normalized Shannon entropy calculated from the probability distributions of the rel-

ative phases. Recalling Eqn. (5.2), we define our synchronization measure Q ≡ 1−S

where S =
∑N

l=1 Pl lnPl/ ln(1/N) (where Pl is the probability of ∆ΦGmod1 being

in bin l). By plotting the Q as a function of νo we are able to study the phase

synchronization of lasers 1 and 2 in a range of frequency regimes and ratios. In

Fig. 5.10(a) we see that for a 1:1 frequency ratio, strong phase synchronization is

observed for frequency bands less than 200kHz, and is strongest between 125kHz

and 200kHz (solid line). The dashed line indicates the base level provided by

the surrogate measurement. The synchronization ranges for frequency ratios of

νo(laser1) : νo(laser2) =1:2 and 2:1 are more restricted and weaker than observed

in the 1:1 case, as seen in Figs. 5.10(b) and (c) respectively. In all cases σ = 18kHz.

Scanning the center frequencies of the Gaussian filters in lockstep and at set

ratios, as in Fig. 5.10, suggests a method to obtain a more global picture of phase

synchronization in the three laser array. By shifting the filter centers for both

lasers independently, we are able to identify frequency regimes and ratios of phase

synchronization at a single glance. In Fig. 5.11 we see this method applied and

the synchronization ratios identified in Fig. 5.10 are again observed, and labeled.

Fig. 5.11(a) plots the phase synchronization results on a three dimensional plot

with νo(2) and νo(1) on the x- and y-axes, and our phase synchronization measure

Q on the z-axis. The color scaling is preserved in Fig. 5.11(b) where we see the

‘bird’s-eye-view’ of the global phase synchronization plot of the first two lasers of

the unmodulated laser array. The synchronization peak near νo(1), νo(2) = 0 is

due to the strong, low frequency content of the unmodulated power spectrum, see

Fig. 5.1(a). This synchronization is ‘false’ as it is present in the surrogate case, see

Fig. 5.10. Along both axes νo is advanced by 5kHz increments while maintaining

a filter width of σ = 18kHz. This produces the dotted lines for higher frequency

ratios in the regimes of phase synchronization.

By applying a soft loss modulation (εmod = 0.07) to the laser array, we ob-

serve a dramatic increase in over-all synchronization, Fig. 5.12. While the maximum

level of phase synchronization for a given frequency regime is basically unchanged,
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Figure 5.11: Global phase synchronization of unmodulated laser 1 with laser 2.
Three dimensional synchronization profile (a) displays Q (z-axis) as the Gaussian
filter centers, νo, for laser 1 (y-axis) and laser 2 (x-axis) are shifted independently.
Significant synchronization is observed along ratios of 1:1, 2:1 and 1:2. The top-
down view (b) preserves the color-scaling of Q in (a). νo is shifted in increments
of 5kHz for both lasers, causing the dotted lines for higher frequency ratios of
synchronization. Selected frequency ratios that display synchronization are labeled.
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Figure 5.12: Global phase synchronization of soft modulated (εmod = 0.07) dynam-
ics of laser 1 and laser 2. Three-dimensional synchronization profile (a) displays Q
(z-axis) as the Gaussian filters for laser 1 (y-axis) and laser 2 (x-axis) are shifted in-
dependently. The top-down view (b) preserves the color-scaling of Q in (a). The soft
loss modulation of the laser cavity increases the frequency range of synchronization
and the number of higher frequency ratios displaying significant synchronization.
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significant synchronization is observed for a broader frequency range of the 1:1 ra-

tio. Synchronization is induced in additional higher frequency ratios with greater

magnitude as well. The ‘false’ (present in the surrogate cases) low frequency syn-

chronization observed in the unmodulated array has disappeared. As observed in

the intensity time series presented in Fig. 4.8, soft modulation results in sustained

chaotic oscillations, eliminating much of the dynamics’ low frequency components.

As in the unmodulated plots, Fig. 5.12(a) provides the global three-dimensional

phase synchronization plot, while Fig. 5.12(b) presents the top-down view, preserv-

ing the color scaling of Q of the three-dimensional plot. Again, νo is shifted by

increments of 5kHz for both lasers independently with σ = 18kHz.

Hard modulation (εmod = 0.23) of the laser array results in q-switched pulse

dynamics. The discontinuous nature of these dynamics predictably suppresses phase

synchronization between the lasers, as observed in Fig. 5.13. However, the phase

synchronization is more uniform in frequency space. The higher frequency ratios of

synchronization also show a greater range of synchronization. As before, the top-

down synchronization plot Fig. 5.13(b) preserves the color scaling of Q in the three

dimensional plots. The center of the Gaussian frequency filters are shifted by 5kHz

steps, with σ = 18kHz.

5.3 Discussion

Phase synchronization and entrainment is studied in a loss modulated linear Nd:YAG

three laser array, where the elements of the array are nearest neighbor coupled. The

intensity dynamics of individual lasers in the array display amplitude instabilities

without modulation, and shift to sustained chaotic dynamics with soft loss mod-

ulation. Increasing the level of modulation, the individual lasers move to chaotic

Q-switched spiking behavior. Entrainment of the intensity dynamics to the sinu-

soidal modulation signal is demonstrated. Defining a measure of entrainment using

the normalized Shannon entropy, we show the entrainment monotonically increases
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Figure 5.13: Global phase synchronization of hard modulated (εmod = 0.23) dynam-
ics of laser 1 and laser 2. Three dimensional synchronization profile (a) displays Q
(z-axis) as the Gaussian filters for laser 1 (y-axis) and laser 2 (x-axis) are shifted
independently. The top-down view (b) preserves the color-scaling of Q in (a). Hard
modulation results in q-switching intensity dynamics, whose discontinuous nature
results in reduced phase synchronization peaks. However, phase synchronization is
more consistent on the frequency ratios indicated.
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with modulation strength.

Significant synchronization of the intensity dynamics of the outer lasers of the

array was found [17]. However, the intensity dynamics alone do not reveal the re-

lationship of the central laser with the two side lasers. By defining phase variables

from the intensity time series, we are able to investigate the relationship of the cen-

tral and side lasers of the array. The phases are calculated using a positive peaked

Gaussian frequency filtered complex Gabor analytic signal. This definition of phase

for the array elements allowed the discovery of relationships between the lasers that

are not otherwise apparent. Additionally, the frequency confined nature of the phase

variables, due to the filter, permitted investigations of various frequency components

and frequency ratios of the dynamics of the laser array. A phase synchronization

measure, again based on a normalized Shannon entropy, allowed the visualization

of a global picture of phase synchronization. Phase synchronization increased dra-

matically, and the synchronized frequency components shifted with soft modulation.

However, hard loss modulation, which resulted in Q-switched intensity time series

suppressed the level of phase synchronization due to the discontinuous nature of the

pulsing dynamics.

Introducing a Gaussian frequency filtered phase variable to study nonstation-

ary noisy data is clearly advantageous. Relationships in the experimental example

of a chaotic linear laser array are clearly evidenced that are otherwise obscured.

This technique should be applicable to a wide range of physical and biological in-

vestigations.
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Chapter 6

Injection Induced Bursting in an Erbium-Doped

Fiber Ring Laser

The occurrence of large bursts is ubiquitous in nature – astrophysical objects [102,

103], neurons [104], and lasers [52, 105, 106, 71] – all display bursting dynamics

under certain conditions. Great effort has been made to understand the origin of

bursts in specific systems. For example, detailed models have been constructed for

neural systems, where it is thought that bursts of electrical activity are responsible

for conveying information to different parts of an organism [107, 108]. By studying

injection induced bursting dynamics in erbium-doped fiber ring-lasers (EDFRL)

insight into these dynamical systems and others may be gained, as well as improved

understanding of EDFRLs.
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6.1 Injected Lasers

The study of the effect of injected light fields on laser properties and dynamics

reaches back to the early years of laser research. In 1972, Spencer and Lamb pre-

sented the first theoretical study of a laser with optical injection [109]. Practical

applications of introducing a monochromatic injection signal to a laser system has

driven investigations into similar systems. Benefits of laser injection include in-

creased power output and stabilization through injection seeding [110], control of

polarization states [111], and, perhaps most importantly, stabilizing and tuning the

optical spectrum of the injected laser through frequency locking [112, 113]. One

ingenious application of injection frequency locking is preventing phase-detuning in

an array of non-identical solid state lasers [114]. By frequency locking the entire

array to a common injection signal peak intensities reach N2I , identical to the per-

formance of a perfectly phase-locked laser array. N corresponds to the number of

lasers in the array and I is the individual laser intensity.

Successful frequency locking is dependent on the detuning of the injection

source with respect to the injected laser. Lariontsev et al. [115] used a class-B,

injected laser model to examine injection locking in a Nd:YAG microchip laser.

Utilizing the uniform field approximation and the slowly varying envelope approxi-

mation for a single longitudinal mode solid state laser the rate equations are

dE
dt

=
[
Γ
(
N

1 − iδ

1 + δ2
− 1
)
− i(ωinj − ωn)

]
E + κ

Einj

Tc

, (6.1a)

dN

dt
=

1

T1

[
No −N

(
1 +

|E|2

1 + δ2
)]
. (6.1b)

Here the field equation, using the slowly varying envelope approximation, has been

shifted to a frame where the complex electric field rotates with the injection laser

frequency such that E = E exp[iωinjt]. The subscript inj differentiates the complex

injected field from the complex laser field. Γ is the photon decay rate from the

laser cavity, and δ = (ωn −ωo)/γ is the relative detuning of the lasing mode n with

the line-center ωo, where 2γ is the linewidth. The ratio of the injected field to the

intracavity field is given by κ. Tc is the cavity round-trip time. Hence, the final
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term of the field equation determines the rate of injection into the cavity. N is the

population inversion density normalized to threshold, and T−1
1 is its decay rate. No

corresponds to the pump strength, and is normalized to the laser threshold value

with ωn = ωo such that No = ηo + 1 and ηo is the excess pump above threshold.

The stability of the injected laser’s intensity dynamics is dependent on the

terms i(ωinj − ωn) and κ in Eqn. (6.1a). First investigating the stable frequency

locked regime, Lariontsev et al. write the stationary solutions for Eqn. (6.1) where

dE/dt = 0 and dN/dt = 0,

S2 = |E|2
[( N

1 − δ2
− 1
)2

+
(
Ω + δ

( N

1 + δ
− 1
))2]

, (6.2)

N =
1 + ηo

1 + |E|2/(1 + δ2)
. (6.3)

Here Ω = (ωinj − ωn)/Γ is the normalized detuning between the injection laser

and the frequency of the independent laser. S = κEinj/(ΓTc

√
Is) is the normalized

injected field amplitude with Is an intensity saturation parameter derived from the

finite gain of the active medium [115]. Considering small perturbations to |E|2 and

N and with the ansatz |E|2, N ∼ exp[λtΓ] we find the characteristic equation

λ3 + a2λ
2 + a1λ + ao = 0, (6.4)

using the definitions

a2 = b− 2N1, (6.5)

a1 = N2
1 − 2bN1 + N2

2 +N3, (6.6)

ao = b(N2
1 +N2

2 ) −N3(N1 + δN2), (6.7)

and

b = (ΓT1)
−1
(
1 +

|E|2

1 + δ2
)
, (6.8)

N1 =
N

1 + δ2
− 1, (6.9)

N2 = δN1 + Ω, (6.10)

N3 =
1

ΓT1

2N |E|2

(1 + δ2)2
. (6.11)
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With Eqns. (6.3) we find stable frequency locking while the inequalities

ao > 0, a1 > 0, a1a2 − ao > 0 (6.12)

hold.

However, the injected laser is not free from the influence of the injected light

field when the detuning shifts slightly beyond the stable frequency locked regime.

A broader range of injection locking allows for instabilities and dynamics due to

interactions of the light fields. This broader locking range is defined by the band of

detunings where the inequality

|E|2 > |Efree|2 (6.13)

holds and encompasses the stable frequency locked range. Here Efree is the complex

electric field of the laser with out injection. As long as the injection is enhancing

the power of the laser, the injected laser system is locked in some fashion. From

Eqn. (6.13) one may derive the broad injection locking range for δ < 0 [110]

−
S
√

1 + δ2√
ηo − δ2

≤ Ω ≤
S√

ηo − δ2
. (6.14)

Figure 6.1 from Ref. [115] displays the frequency locking regimes with increas-

ing normalized injection amplitude S, and pump excesses of ηo − δ2 = 0.01 (label

1), ηo − δ2 = 0.25 (label 2), and ηo − δ2 = 9.84 (label 3). The subject system is a

Nd:YAG microchip laser with a cavity length of 1mm, and a cavity loss of 2%. The

stable boundary (solid line) coincides with the boundary determined by Eqn. 6.14

(dotted line) for the lower boundaries of (1) and (2) and all of (3).

Outside of the stable frequency locking regime, the introduction of an exter-

nal light field to a laser may result in instabilities and chaotic dynamics in the

injected laser. Arecchi and co-workers examined theoretically the case of a homo-

geneously broadened CO2, laser where optical injection resulted in period doubling

cascades and deterministic chaos [52, 105, 12]. Careful and extensive work mapping

bifurcations, routes to chaos and dynamics in injected semiconductor laser systems

has been pursued by Krauskopf, Lenstra, Simpson and co-workers in recent years

[116, 117, 118, 119, 120].
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Figure 6.1: Stable (solid lines) and unstable (dotted lines) locking regimes for pump
excesses of ηo −δ2 = 0.01 (label 1), ηo −δ2 = 0.25 (label 2), and ηo−δ2 = 9.84 (label
3) for the modeled Nd:YAG microchip laser. An unstable locking regime beyond
the stable frequency locked boundaries only occurs above the upper boundaries of
the two weakly pumped cases. [115]
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Beyond the range of any frequency locking, the injected laser dynamics may

still be modified by the injected light field. The injected light may still sample the

population inversion, beat with the lasing mode, and non-linear interactions such as

four-wave mixing may occur between the injected frequency and the lasing frequency

[121] to produce additional lasing peaks in the optical spectrum of the injected laser.

6.2 Injected EDFRL Bursting Dynamics

Bursting is induced in the erbium-doped fiber ring-laser by a constant intensity,

monochromatic injection from an external cavity semiconductor diode laser [20].

Fig. 6.2 displays the experimental setup used to study injection-induced bursting

dynamics. The active element of the ring laser is an erbium-doped fiber amplifier

(EDFA) containing 17m of erbium-doped fiber pumped with a 980nm semiconduc-

tor diode laser. The fiber amplifiers (Model OFA-1203-17) used for this research

were constructed by Oprel Corporation, which has since been purchased by JDS

Uniphase. The ring-laser is operated far above threshold, with a pump power of

130mW . Lasing threshold occurs at about 10mW . Under these conditions, the

optical power circulating in the ring laser is PRL ≈ 9mW . The uni-directionality

of light propagation within the ring cavity in the direction of the arrow is enforced

by Faraday optical isolators internal to the EDFA. The total fiber ring length is

approximately 41.5m. All passive (Corning, SMF) and doped fiber is single mode,

non-polarization maintaining. A (λ/4, λ/2, λ/4) optical waveplate polarization con-

troller (PC) allows tuning of the net birefringence of the ring laser, and hence its

lasing frequency, among other characteristics. The optical waveplates are mounted

on a gradient refractive index lens coupled fiber bench, forming the polarization con-

troller (Optics For Research, PC-FFB-S/S-1550-Y). We select a mode of operation

where the EDFRL displays a single-peaked spectrum centered at λ = 1557.8nm,

with a full width at half maximum of approximately 0.6nm.

A common constant optical signal, also at λinj = 1557.8nm, is injected into
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Figure 6.2: An injected Erbium-Doped Fiber Ring-Laser (EDFRL) with total fiber
length of 41.5m displays bursting dynamics. The injection laser is a tunable Ex-
ternal Cavity Semiconductor Diode Laser (ECSL). The EDFRL intensity dynamics
are measured using a 125MHz bandwidth photo-detector and a 1GHz bandwidth
Digital Sampling Oscilloscope.

the ring cavity using 70/30 fiber-optic evanescent field couplers (Gould Fiber Op-

tics, Single Mode Coupler/Splitter 1550nm, 50-1 35-30-2-31-6-1), stimulating large

intensity bursts in the ring-laser. The constant signal source is a tunable external

cavity semi-conductor diode laser (ECSL) (Photonics Inc., Tunics-BT tunable diode

laser).

Light from the EDFRL is extracted with a 70/30 coupler, and the dynamics

are studied by measuring the intensity with a 125MHz bandwidth photodetector

(New Focus Corp. Model 1811 IRDC) and a 1GHz bandwidth digital sampling

oscilloscope (LeCroy, LC534).

The large bursts in intensity from a weak, constant injection signal are shown in

Fig. 6.3. The top intensity time series displays injection induced bursting dynamics

that may be contrasted with the free running EDFRL dynamics plotted below.

While the burst events are large, and relatively slow, they each contain many fast

intensity fluctuations. These fluctuations are the relaxation oscillations of the ring

laser as the burst is damped and the ring laser returns to ‘steady state’ operation.

The relaxation oscillation frequency is approximately 45kHz.
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Figure 6.3: Optical injection induced bursting dynamics in the EDFRL (top) con-
trasted with the steady state output of the EDFRL with out injection (bottom).

Every burst in the ring-laser does not immediately return to steady state be-

havior. Often, as the initial burst relaxes, an additional burst or a train of additional

bursts may occur before the laser finally returns to a state of relatively stable oper-

ation. Here the power ratio of the frequency matched optical injection signal to the

intra-ring power is Pinj/PRL = 2.8 × 10−3.

The optical spectra of the injection laser (dashed line) and the ring laser (solid

line) are plotted on a log-linear scale in Fig. 6.4. Here, the injection laser and the

EDFRL (without injection) are tuned such that their intensities as well as their peak

frequencies are matched, λinj = λRL = 1557.8nm. The full width at half-maximum

(FWHM) of the ring laser spectrum is ∆λ ≈ 0.6nm, or ∆ν ≈ 74GHz. The width

of the injection laser’s optical spectrum (dashed line) is due to the 60pm resolution

of the optical spectrum analyzer. The reported FWHM of the single mode external

cavity semiconductor laser is ∆ν = 150kHz or ∆λ = 1.21fm [122]. Note that

in dBm a difference of −3 corresponds to a factor of two decrease in power. The

FC/PC fiber coupled optical spectrum analyzer used is Agilent Technology’s Model

86141B OSA.

The difference in the spectral widths of the two lasers is simply due to the
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Figure 6.4: Optical spectra of EDFRL (solid line) and monochromatic injection laser
(dashed line) with powers and frequencies matched. The width of the injection laser
spectrum is due to instrumentation limitations. ∆λRL = 600pm, ∆λinj = 1.21fm
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single mode nature of the external cavity injection laser and the multi-mode nature

of the fiber ring laser. Recall that the ring cavity length is L = 41.5m, which

corresponds to a free spectral range of ∆νsp = 5MHz. The free spectral range

determines the optical mode spacing in a laser, and, for a ring cavity, is defined by

∆νsp = c/nL, where c is the speed of light in vacuum, n = 1.44402 is the index of

refraction of fused silica (optical fiber), and L is the total length of the ring laser.

Therefore, just the FWHM tip of the EDFRL spectrum contains ≈ 15000 modes

contributing to the total intensity of EDFRL. It is also important to note that there

exists a broad gain region beyond the lasing peak. Recalling Fig. 3.7, strong optical

gain is available from 1530nm to 1560nm and beyond.

By successively injecting the EDFRL with different wavelengths of light and

comparing the resulting dynamics, we are able to examine the effects of detunings

between the injection and ring-lasers’ spectral peaks on the bursting dynamics. In

Fig. 6.5 we observe that the amplitude and frequency of bursts depend on the relative

wavelengths of the laser. Starting with the injection laser matched to the EDFRL

wavelength of λRL = 1557.8nm (top intensity time series) the injection laser is

progressively tuned towards the blue such that λinj < λRL (moving down Fig. 6.5).

As the detuning between the two lasers increases, the amplitude and the frequency

of the bursts decreases. However, it is important to note that significant bursts still

occur even after λinj has moved beyond the EDFRL spectral peak. Eventually, with

the injection laser tuned to λinj = 1545.0nm the EDFRL intensity dynamics are

nearly identical to a ring laser without injection (bottom plot), with only minor,

infrequent instabilities. For all intensity time series, Pinj/PRL = 2.8 × 10−3, with

both laser powers held constant. Note that the DC offsets of the intensity time

series are artificial.

By choosing the ratio of the standard deviation of the intensity time series with

its mean, σ(I(t))/〈I(t)〉, as an intuitive measure of the bursting dynamics, we com-

bine the amplitude and frequency of the bursting dynamics. By stepping through

injection laser power as well as optical detuning, we observe a peaked structure in

the top plot of Fig. 6.6. Here, the z-axis is the ratio σ(I(t))/〈I(t)〉, the x-axis is the

109



Figure 6.5: Injection induced bursting dynamics with increasing detuning. As the
injection wavelength is moved away from the lasing peak of the EDFRL the ampli-
tude and frequency of bursts decrease, until the intensity time series of the injected
ring laser resembles that of a EDFRL without injection.
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Figure 6.6: Profile of the standard deviation of the bursting intensity time series
normalized by the mean intensity (σ(I(t))/〈I(t)〉) as a function of injection power
and wavelength. The peak is found at the maximal injection power, and near zero
detuning. The gray-scale is preserved between the three dimensional and two di-
mensional plots.

injection laser’s peak wavelength, and the y-axis is the logarithm of the ratio of laser

powers log10Pinj/PRL. Preserving the gray-scale encoding of the z-axis, the right

plot of Fig. 6.6 provides a top-down view of the structure. As expected, the apex

of the peak is located on resonance with the ring-laser, at the maximum injection

power, Pinj/PEDFRL = 2.8 × 10−3. The measure σ(I(t))/〈I(t)〉 increases linearly to

this peak at resonance as a function of the log10Pinj/PRL. Additionally we observe

an asymmetry between blue (λinj < λRL) and red (λinj > λRL) detuned injection in-

duced dynamics. The nonlinear slope drops more quickly on the red detuned slope.

This is likely due to the reduced gain in this region (see Fig. 3.7). Again, bursting

is present with λinj beyond the lasing peak of the EDFRL, Fig. 6.4.

6.3 Origins of Bursting Dynamics

Beyond just observing the phenomena of injection induced bursting dynamics we

need to understand its origins. Without this understanding we would be missing a

significant piece of the overall picture of erbium doped fiber ring lasers. Uncovering
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Figure 6.7: Fiber heterodyne experimental setup to study the optical mode dynamics
of the erbium doped fiber ring laser. half of the output of the stable external cavity
injection laser acts as a frequency signal (bottom channel). The output of the ring
laser is divided into two channels. The top channel acts as a dynamics reference,
carrying the pure EDFRL dynamics. The second half of the ring laser output is
combined with the frequency reference signal using a 50/50 coupler, forming the
heterodyne channel. The intensity dynamics of the heterodyne channel is compared
with the pure EDFRL intensity dynamics to study the ring laser mode dynamics.

the source of these large intensity fluctuations may point the way to improved sta-

bility in fiber ring lasers and fiber laser arrays, both important in many applications.

Additionally, understanding the complex bursting observed here provides a possible

tool for understanding bursting dynamics in other systems with similar behavior,

such as neurons [108].

The complex multi-mode character of EDFRLs provides a clue as to the origins

of the ring-laser bursting. As discussed in Section 6.1, locking to and interactions

with an injected laser field may cause significant changes in the behavior of the laser

system. Therefore, we need to understand how the single-mode injected laser field

interacts with the multiple lasing modes in the EDFRL.

To reveal the optical mode structure of the EDFRL and its dynamics, we
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conduct a simple heterodyne experiment using the experimental setup diagramed in

Fig. 6.7. The erbium-doped fiber ring-laser is identical to the one described above,

with an active medium consisting of 17m of erbium doped fiber which is pumped

with a 980nm emitting semiconductor diode laser. The ring laser is operated far

above threshold with an intracavity power of approximately 9mW . Faraday optical

isolators internal to the fiber amplifier ensure the unidirectional circulation of light

in the ring cavity in the direction indicated by the arrow. The total length of the

single-mode, non-polarization maintaining optical fiber that forms the ring laser is

41.5m, resulting in a free spectral range of ∆νsp = 5MHz. A (λ/4, λ/2, λ/4) optical

waveplate polarization controller allows tuning of the net birefringence of the fiber

ring laser, and hence its lasing frequency, among other characteristics. Using this

polarization controller, we tune the ring-laser such that it has a single dominant

peak centered at λRL = 1557.8nm. Light is extracted from the ring cavity using a

70/30 evanescent field coupler. Bursting dynamics are stimulated by injecting light

from a tunable external cavity semiconductor diode laser (ECSL) into the EDFRL

using another 70/30 coupler.

The external cavity injection laser provides an ideal, stable reference laser

for the heterodyne experiment. Tuned to the peak wavelength of the EDFRL, a

50/50 coupler (Gould Fiber Optics, single mode, 1550nm 2x2 splitter/combiner)

diverts one half of the ECSL output to the fiber optic heterodyne. The EDFRL

output is also split into two equal parts using a 50/50 coupler. The top fiber optic

channel in Fig. 6.7 carries the baseline, pure EDFRL dynamics to be detected and

recorded using a 125MHz photo-detector and a 1GHz bandwidth digital sampling

oscilloscope. The other half of the ring laser output is combined with the reference

laser light in the heterodyne channel using another 50/50 fiber optic coupler. All

fiber lengths in the experimental setup are matched for simultaneous detection.

Light from the two lasers possess slightly different optical frequencies, and

hence the optical phases of the two lasers rotate at different rates. As these phases

slide in and out of phase with respect to one another, the laser fields constructively

and destructively interfere, resulting in periodic fluctuations of the total intensity of
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the combined beam. Due to the fact that the EDFRL output consists of thousands

of lasing modes, the combined beam will have intensity fluctuations that correspond

to a superposition of the detunings of each of these modes with respect to the stable

reference frequency of the external cavity laser. In this case, we choose AC coupling

so the only effect of mixing the laser fields is the beat induced modulations on the

EDFRL intensity dynamics.

The second arm of the final 50/50 coupler also carries the combined EDFRL

injection laser signal. By connecting this channel to a fiber coupled optical spectrum

analyzer and blocking the EDFRL and the reference laser output in turns, the

peak frequencies and powers entering the heterodyne channel are matched. This

state corresponds to the optical spectrum observed in Fig. 6.4. Variable attenuator

tweeker modules (not shown) (Optics For Research, Model HW-XY-1.5IR) are used

to match peak powers.

As the entire experimental setup is constructed from non-polarization main-

taining optical fiber, it is necessary to actively match the polarization state of the

laser fields mixed and sampled. The ring laser generally lases in an elliptically po-

larized state [123, 14]. Lasing along orthogonal polarization directions in the ring

laser may be thought of as two independent lasers sampling the same gain [59].

Additionally, optical fiber is intrinsically birefringent; every segment of fiber may be

thought of as a randomly oriented polarization waveplate of indeterminate strength

[124]. Fortunately, in a vibration isolated, temperature controlled laboratory envi-

ronment, this collection of randomly oriented ‘waveplates’ is static for time scales

of many minutes. Therefore, using both waveplate (Optics For Research) and fiber

polarization controllers (PC) (Fiber Control Industries) in addition to linear polar-

izers (Optics For Research, Model PCB-IR1), it is possible to match the polarization

states of the EDFRL and reference laser fields combined along the heterodyne chan-

nel. The polarized projection of the ring laser field in the heterodyne channel is

matched with a polarization controller and linear polarizer in the pure EDFRL arm,

ensuring the baseline intensity dynamics of the two arms are identical. Variable

attenuator ‘tweeker’ modules (not shown) that do not affect polarization are used
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to match the amplitudes of the baseline EDFRL dynamics.

Figure 6.8 illustrates the procedure for isolating the dynamics due to beating

the EDFRL and injection laser, allowing the study of the EDFRL optical mode

dynamics. Here, we concentrate on just a few relaxation oscillations of the single

burst of the pure EDFRL output in Fig. 6.8(a). Fig. 6.8(b) displays just these

oscillations, while Fig. 6.8(c) shows the beated EDFRL/reference laser signal. The

oscillations in the intensity time series due to the time variable interference of the

two lasers are readily apparent. Both the pure ring laser and beat dynamics are

normalized to the standard deviation of the pure EDFRL intensity time series. When

we subtract the pure ring laser intensity time series, from the heterodyne intensity

time series we recover the dynamics solely due to the interaction of optical modes

of the EDFRL and the injection/reference laser, Fig. 6.8(d). Figs. 6.8(e-g) display

the power spectra of the pure EDFRL dynamics, beat dynamics and their difference

respectively. A dominant peak at 5MHz, corresponding to the free spectral range

of the ring laser and indicative of the round-trip time repeating dynamics mentioned

in Section 3.5.4, is apparent in both Figs. 6.8(e & f). The subtraction of the two

signals greatly suppresses this feature, as may be seen in the power spectrum of the

difference time series, Fig. 6.8(g) . The intensity time series is sampled at a rate

of 500 × 106 samples/second. The power ratio of the injected optical signal to the

circulating power is Pinj/PRL = 7.4 × 10−2.

First, we examine the somewhat simpler mode dynamics of the fiber ring laser

without injection. Fig. 6.9(a) displays the pure intensity time series of the EDFRL.

Both the AC coupled EDFRL and the beated EDFRL/reference laser intensity time

series are normalized to the standard deviation of the pure ring laser dynamics.

The spectrogram of the difference of these data sets, the isolated beat dynamics

due to the interaction of the EDFRL modes with the reference laser, is plotted in

Fig. 6.9(b). The 2ms data set, sampled at 500 × 106 samples/second, is divided

into 100 time steps with no overlap, and the power spectra for each of the 20µs,

10, 000 point time segments is calculated and formed into a matrix. The logarithm

of the power spectra amplitudes are encoded in color.
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Figure 6.8: Isolating intensity dynamics due to the interaction of the optical modes
of the EDFRL and the injection laser outputs. Initial relaxation oscillations of an
injection induced burst are isolated (a & b). The corresponding oscillations from
the EDFRL, mixed with the external cavity laser output, displays large intensity
oscillations due to the beating of the two lasers (c). Taking the difference between
the two intensity time series, the dynamics due to the beating of the two lasers
are isolated (d). Suppression of the dominant features due the EDFRL intensity
dynamics seen in power spectra (e & f) is observed in the power spectrum of the
isolated beat dynamics (g).
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Figure 6.9: Longitudinal optical mode structure of the EDFRL without injection.
The pure baseline ring laser dynamics are plotted in (a). The individual modes
wander over several MHz in the spectrogram of the isolated beat dynamics of the
ring laser with the external cavity reference laser (b). The duplicate, mirror image
modes within the free spectral range of 5MHz results from only being able to
measure the magnitude of the optical mode detunings, not their signs. The mode
‘reflection’ at 1.4ms is simply that particular ring laser mode passing through the
optical frequency of the reference laser and shifting from a positive detuned to a
negative detuned mode, or vice versa.
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In Fig. 6.9(b) each of the wandering red and yellow trajectories represents

an optical mode of the free running EDFRL. Again, the free spectral range of the

fiber ring laser is νsp = 5MHz, and dictates the longitudinal mode spacing. Note

that within a detuning range, vertical axis, of 5MHz there are two modes whose

wandering seems to mirror each other. The number of expecte modes doubles be-

cause the frequency of the intensity fluctuations in the heterodyne signal gives the

magnitude of the detuning between EDFRL modes and the reference laser. There-

fore, a negatively detuned EDFRL mode is folded over to a positive detuning in

the spectrogram, and appears as the near mirror image of the positively detuned

EDFRL mode. Additionally, the apparent reflection of the minimally detuned mode

off of the zero-detuning reference at 0.3ms and 1.4ms is simply that particular ring

laser mode passing through the optical frequency of the reference laser and shifting

from a positive detuned to a negative detuned mode, continuing to evolve, and then

passing through the reference frequency again. The ring laser modes maintain their

∆νsp spacing as they wander over several MHz, without any apparent deterministic

behavior. The horizontal line at ∆ν = 5MHz is due to imperfect subtraction of the

base line EDFRL intensity dynamics.

We now turn to a study of the mode dynamics of the EDFRL with injection.

Fig. 6.10(a) displays the intensity time series of a pair of injection induced bursts,

sampled at 500 × 106 samples/second for a span of 2ms. Again, the AC coupled

EDFRL and the beated EDFRL/reference laser intensity time series are both nor-

malized to the standard deviation of the pure EDFRL dynamics. The spectrogram

of the difference of these data sets, the isolated beat dynamics due to the interaction

of the EDFRL modes with the reference laser, is plotted in Fig. 6.10(b). As before,

the 2ms ‘difference’ time series displayed in Fig. 6.10(a) is divided into 100 time

segments with no overlap between the segments. The spectrogram is formed by

calculating the power spectrum for each of the time slices and arranging the results

in a matrix. The result is plotted with the amplitude of the power spectrum en-

coded as color. The horizontal lines are due to imperfect suppression of the EDFRL

intensity dynamics. The faint ghost images forming additional sets of lasing modes
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Figure 6.10: Longitudinal optical mode structure of an injected EDFRL. Injected
induced bursting dynamics are plotted in (a). Individual optical modes wander
relatively independent of the injection laser (b). Intermittently the minimum de-
tuned EDFRL mode moves within locking range of the injection laser and locks.
The locked mode monopolizes the gain provided by the erbium doped fiber, extin-
guishing lasing in all other modes. Large amplitude bursts in the EDFRL output
occur when the minimum detuned mode escapes the locked state. At all times,
optical power is concentrated near the injection laser frequency. Ghost images of
orthogonally polarized lasing modes are observable.
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are due to orthogonally polarized laser light fields, which are projected on the linear

polarization state sampled by the linear polarizers shown in Fig. 6.7.

The critical development in the optical mode dynamics of the EDFRL with

injection, and the difference between the uninjected case, is the interaction of the

injection laser with its nearest neighbor EDFRL mode. While the detuning is rel-

atively large, the mode evolution proceeds similarly to that observed in Fig. 6.9(b)

for the uninjected laser. However, instead of merely passing through the injection

laser frequency, it locks to the injected laser. At this point, all the power in the

EDFRL is contained in this locked mode and all the other modes in the ring laser

disappear. Ever so briefly, the injected EDFRL is a stable single-mode laser. Lock-

ing is evident in the intensity time series as the extent of the intensity fluctuations

for this period are tightly confined, Fig. 6.10(a). When the ‘natural’ trajectory of

the EDFRL mode moves beyond the locking regime, the laser bursts free of the

injection frequency. The many EDFRL modes that were robbed of gain re-initiate

lasing and the intensity undergoes relaxation oscillations in returning to its initial

state, similar to that of the independent EDFRL. The ring laser modes then con-

tinue to wander, relatively independent of the injection, until the minimum detuned

mode again momentarily locks to the injection laser, and subsequently initiates a

burst upon release from the single mode locked state. Therefore, it is evident that

the injection-induced burst dynamics are due to strong, intermittent interactions of

the least detuned EDFRL mode with the reference injection laser, consisting of brief

periods of locking, followed by bursts upon release of the EDFRL mode from the

injection laser frequency.

The modes of the injected EDFRL are never completely free of the influence of

the injected light field. Examining the magnitude of the minimally detuned EDFRL

mode compared to the others within the 2∆νsp range of Fig. 6.10(b), we see a

significant decrease of power in modes removed from the injection laser frequency.

Returning to the freely wandering EDFRL modes in Fig. 6.9(b) we observe there is

nearly equal power in all the modes represented. There is always a confinement of

the optical spectrum of the ring laser around the injection laser.
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6.4 Injected EDFRL Model

We have observed experimentally that injection induced bursting dynamics are due

to intermittent interaction of the minimally detuned mode of the erbium-doped fiber

ring-laser and the single, stable mode of the injection laser. We also note that the

bursting dynamics and relaxation oscillations are on time scales of milliseconds and

tens of microseconds; many hundreds of times greater than the ring laser round

trip time τc = 200ns. With these two considerations in mind, we are free to take

the uniform field approximation and model the injected ring laser as single mode

class-B laser. We propose a simplified phenomenological model more similar to that

describing a Nd:YAG laser, Eqns. (3.28 & 3.29), than to the model describing the

sub-round trip dynamics of an EDFRL, Eqns. (3.45, 3.46, & 3.47),

dE

dt
= (G− α)E − i∆ω(t)E +Einj + η(t), (6.15)

dG

dt
=

1

T
(p−G− G|E|2).

Here E is the slowly varying complex electric field of the ring laser, and G is the

normalized real gain of the doped fiber. We have chosen a rotating reference frame

with a rate identical to the frequency of the injection laser, ωinj , and normalized the

time variable t by τc. The dimensionless detuning of the ‘natural’ lasing frequency

ωc of the ring laser, with respect to the injection laser frequency ωinj is given by

∆ω = (ωinj − ωc)τc, as determined by the ring cavity geometry and the properties

of the lasing medium. The cavity loss coefficient is α, while the pump rate is p, and

the threshold pump rate for laser action is pth = α. The amplitude of the injected

field is given by Einj . Spontaneous emission noise is given by η(t), an independent

Gaussian white noise source of zero mean with correlation 〈η(t)η(t′)〉 = 2Dspδ(t− t′)

and strength Dsp. T , the time scale ratio in the gain term of Model (6.15), is defined

by T = τf /τc = 5× 104 , where τf = 10ms is the fluorescing time of the upper lasing

level of the population inversion in Er3+.

As discussed in Section 6.2, the EDFRL possesses many thousands of closely

spaced longitudinal lasing modes with generally elliptic polarization states [14].
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These properties are neglected in the above phenomenological model, which exam-

ines only a single linearly polarized longitudinal mode. As such, we must empirically

match the majority of the model parameters such that simulations display dynamics

similar to those of the actual laser system. The fluorescence time τf = 10ms and

the cavity round trip time τc = 200ns used in the model correspond to those of the

laser.

We are primarily concerned with understanding the bursting behavior observed

in the injected EDFRL. Therefore, the relaxation oscillation frequency νrel ≈ 45kHz

and the damping rate of the bursts Tdamp ≈ 0.2ms observed experimentally must

be reproduced in the model. We use the relations

νrel = 1
2πτc

√
2p−α

T , (6.16)

Tdamp = 2Tατc

p
,

obtained from linear stability analysis of Model (6.15) in the absence of injection,

to tune the parameters p and α. We find the pump rate p = 80 and the loss

coefficient α = 0.8 provide the necessary values for Tdamp and νrel. This pump is

eight times that of the experimental value, possibly due to an underestimation of the

gain of the laser due to the single mode and uniform field approximations inherent

in Model (6.15).

The injected power ratio for the simulated system may be determined by the

relation
Pinj

PRL

=
|Einj|2

〈|E|2〉
. (6.17)

In the experimental studies, a typical injected power ratio was on the order of 10−4.

At this level, the stable locking range [115], Eqn. (6.12), is only ±0.01MHz, and

much smaller than the observed wandering of the ring laser modes, Figs 6.9&6.10.

Therefore, the shifting modes of the ring laser result in the minimally detuned

mode traveling through all possible locking regimes with respect to the injection

laser: beyond the influence of the injection laser, in the stable locking range, and in

the dynamically complex intermediate locking range [52, 12, 75].
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We phenomenologically approximate this frequency wandering using exponen-

tially correlated Gaussian noise, specifically Ornstein-Uhlenbeck colored noise ξ(t)

[82] such that

∆ω(t) = (ωinj − ωc)τc = ∆ωo + ξ(t). (6.18)

Here, ∆ωo is the unitless detuning constant about which the ring laser frequency

wanders. The wandering, given by Ornstein-Uhlenbeck noise, may be calculated

with the simple ordinary differential equation

dξ

dt
= − 1

τω
ξ +

1

τω
ηω(t). (6.19)

The correlation time of ξ(t) is τω = 2 × 103 = τ−1
c × 0.4ms, and ηω(t) is the

Gaussian white zero mean seed noise. The delta-correlated seed noise is described

by 〈ηω(t)ηω(t′)〉 = 2Dωδ(t − t′) and has a strength Dω = 2 × 103. ξ(t) is described

by the correlation 〈ξ(t)ξ(t′)〉 = Dωτ
−1
ω exp[−|t − t′|/τω]. The experimental equiva-

lents of Dω, τω, and ∆ωo should all be independent of the injection amplitude. It

is important to note that we are not able to control the exact value of ∆ωo exper-

imentally, though it is confined to within a few MHz because the mode spacing is

determined by ∆νsp = 5MHz.

A comparison in Fig. 6.11 of numerical (left panel) and experimental (right

panel) results verifies that Model (6.15), with the detuning wandering given by

Eqn. 6.19, reproduces the essential features of the injected ring laser dynamics.

Beyond displaying similar intermittent bursting dynamics, the amplitude of the

bursts grows with the level of injection. The injected power ratios, Pinj/PRL, used

in the simulations were 2.50×10−5, 1.59×10−4, and 1.44×10−3 in Figs. 6.11(a), (b)

and (c), respectively. The experimental values were 1.53 × 10−4, 4.82 × 10−4, and

1.92 × 10−3 in Figs. 6.11(d), (e) and (f) respectively. Note that the model produces

large amplitude bursts with significantly lower injection. To allow a more direct

comparison, all intensity time series have been normalized by their mean intensity,

which is unaffected by the injection amplitude.

Examining a single pair of bursts, we are able to observe that, as in the exper-

imental system, the bursting dynamics in the simulations are due to intermittent
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Figure 6.11: Bursting dynamics produced by numerical integration of Model (6.15)
(left panel), qualitatively reproduce the intermittent bursting dynamics of the ex-
perimental time series (right panel). Additionally, the burst intensities scale with
increased injection power. The simulated injected power ratios, Pinj/PRL, were
2.50 × 10−5 (a), 1.59 × 10−4 (b), and 1.44 × 10−3 (c). The experimental values were
1.53 × 10−4 (d), 4.82 × 10−4 (e), and 1.92 × 10−3 (f).
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Figure 6.12: Intermittent interaction between the wandering ring laser mode and the
injected field (b) result in bursting dynamics (a). The detuning, ∆ν is determined
from the rotation rate of the complex field E(t) in Model (6.15). The frequency
evolution is frequency filtered at 50kHz in order to match the resolution of the
experimental heterodyne measurements.
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interactions of the wandering ring laser mode and the injection laser, Fig. 6.12. The

detuning is determined by calculating the instantaneous time derivative of the com-

plex field E(t). Recalling that Model (6.15) was constructed in a frame rotating with

ωinj , the rotation rate of the lasing field is identical to the detuning between the ring

and injection lasers. This is completely analogous to how the ring laser mode dy-

namics were obtained in the experimental heterodyne measurements, Figs. 6.9&6.10,

except we are able to determine the sign of the detuning in the simulations. The

frequency evolution is frequency filtered at 50kHz in order to match the resolution

of the experimental heterodyne measurements. The mean of the wandering mode

is ∆ωo = −1MHz. In Fig. 6.12(a) we observe a pair of bursts which are obviously

correlated with the intersections of the laser mode and the injection laser frequency

in Fig. 6.12(b). Here, the horizontal line marks the resonance between the ring and

injection lasers. The locking region of ±0.01MHz about this line is too small to dis-

play. The first burst in the series is initiated as the simulated EDFRL mode passes

through locking region. Here, Pinj/PRL = 1 × 10−4 so any locking between the two

lasers is too brief to detect, as is the case in the experimental system with equiv-

alent injection levels. Recall that, in the experimental heterodyne measurement,

Pinj/PRL = 7.8 × 10−2, resulting in a locking range of ±0.28MHz which allows the

frequency locking observed in Fig. 6.10. It is interesting to observe how multiple

intersections of the ring and injection lasers combine to form a relatively complex

second burst. Additionally, we observe that even with a relatively large detuning,

the injected field may affect the dynamics of the system. Between the two bursts,

slightly before 0.75ms, a momentary dip of the ring laser mode towards resonance

produces a low amplitude instability in the intensity time series. As discussed in

Section 6.1, dynamics arise due to interactions of a laser with an injected field near

the boundaries of the stable locking regime.
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Figure 6.13: Identification of burst times and amplitudes in a bursting time series.
The open circles locate the dominant peak in a given burst.

6.5 Statistical Comparison of Experiment

and Model

We have observed similar bursting dynamics resulting from the intermittent inter-

action of the ring laser with an injection laser in the phenomenological model and

experiments. However, we still need to analyze the statistics of the bursting dynam-

ics to gain a quantitative comparison of the model and experiment, and hopefully

gain further insight into the bursting dynamics themselves. Surprisingly, we find

excellent statistical agreement between the experimental bursting time series and

noise-driven dynamics of the numerical simulations.

The bursting dynamics presented throughout this chapter, in both experimen-

tal and numerical systems, are highly irregular in time and burst amplitude. The

first step in analyzing the nature of these dynamics is to identify the burst times and

intensities. This is most successfully achieved by determining the dominant peak in

a given burst. An illustration of this method is presented in Fig. 6.13, where the

open circles mark the selected peaks in the experimental time series. We require

that the selected peaks be above the adaptive threshold Ith = 〈I〉 + 2σ(I). The

algorithm allows for multiple bursts to be identified within a larger train.
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Figure 6.14: Normalized interburst time probability distributions for numerical (a)
and experimental (b) time series. In both cases, the distributions are unaffected
by the injection level and display a power law decay with an exponent ∼ −1.45.
Symbols and injection power ratios Pinj/PRL are matched in the figure legends.

Using the burst times from the peak detection algorithm, we calculate the

normalized probability distribution of the interburst times ∆T . The interburst time

distributions for the numerical and experimental bursting time series presented in

Fig. 6.11 are plotted in Figs. 6.14(a & b), respectively, and are quite similar to each

other. The full time series are two seconds long and contain approximately 2500

bursts. While the burst intensities increase in Fig. 6.11 with increasing injection, it

is apparent that the burst distributions are unaffected by the injection level. This

supports our conclusion that the bursts are due to the wandering of the lasing

frequency of the ring laser mode over a range on the order of MHz. Both the

numerical and experimental cases show a distinct power law decay with an exponent

of approximately −1.45 that extends approximately one and a half decades from

∆T = 10−1. A similar power law decay has been found in noise driven systems

displaying on-off intermittency [26, 27], such as electroconvection in liquid crystals

[35]. The injection levels in the numerical case (Fig. 6.14(a)) are Pinj/PRL = 2.50×

10−5, 1.59 × 10−4, and 1.44 × 10−3 and are represented by open circles, diamonds

and squares, respectively. In the experimental plot (Fig. 6.14(b)) Pinj/PRL = 1.53×

10−4, 4.82 × 10−4, and 1.92 × 10−3 and are again represented by open circles,
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Figure 6.15: The average inter-burst time ∆T (open circles) is essentially constant
with respect to Pinj/PRL for both simulations (a) and experiments (b). The large
error bars reflect the aperiodic nature of the bursting intensity time series in both
cases.

diamonds and squares, respectively.

The relative invariability of the bursting behavior in time with respect to the

level of injection, Fig. 6.14, is observed over a broader range in Fig. 6.15. Here, we

look at the mean interburst times (open circles), ∆T , for the numerical simulations,

Fig. 6.15(a), and experimental measurements, Fig. 6.15(b), for a sample of Pinj/PRL

including those examined in Fig. 6.14. As one would expect, 〈∆T 〉 is nearly constant

(1.3ms < 〈∆T 〉 < 2.0ms in both cases) over the entire range of injection strengths.

The large errorbars reflect the aperiodic nature of the bursting time series.

Using the burst peak intensities, Ip we found using our burst detection algo-

rithm (Fig. 6.13), we are able to examine the normalized probability distribution

of the burst intensities in Fig. 6.16. Here we study the same numerical (a) and

experimental (b) data sets that we examined in Figs. 6.11&6.14. The increase

in bursting amplitudes with increased injection is demonstrated by the distribu-

tions shifting towards the right in both cases. Both numerical and experimen-
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Figure 6.16: Normalized probability distributions of the peak burst intensities Ip (a)
and experimental (b) data sets display the same qualitative features and trends for
increasing values of Pinj/PRL The data sets studied are identical to those examined
in Figs. 6.11&6.14. Pinj/PRL’s and corresponding symbols are matched in the figure
legends.

tal plots show a similar change in overall distribution shape with increased injec-

tion, however in all cases a region of power-law decay is readily apparent. These

power-law tails again agree with previous observations of systems exhibiting on-

off intermittency [35]. The injection levels in the numerical case (Fig. 6.14(a)) are

Pinj/PRL = 2.50 × 10−5, 1.59 × 10−4, and 1.44 × 10−3 and are represented by open

circles, diamonds and squares, respectively. In the experimental plot (Fig. 6.14(b))

Pinj/PRL = 1.53 × 10−4, 4.82 × 10−4, and 1.92 × 10−3 and are again represented by

open circles, diamonds and squares, respectively.

6.6 Discussion

The surprising experimental observation of irregular bursting dynamics initiated by

a weak, frequency matched optical injection signal has been investigated and phe-

nomenologically modeled. Experimental heterodyne measurements reveal that the

lasing modes of the ring laser slowly wander over a range of MHz independent of in-

jection. The intermittent interaction of the minimally detuned ring laser mode and
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the monochromatic injected light field leads to brief periods of the EDFRL locking

to the injection laser. The EDFRL then escapes the frequency locking range, pro-

ducing bursts in the intensity time series. A phenomenological model of the injected

laser system, considering a single, linearly polarized mode with Ornstein-Uhlenbeck

noise driven detuning, qualitatively and statistically reproduces the most important

features of the injected ring laser dynamics. Both numerical and experimental inten-

sity time series produce normalized probability distributions displaying power-law

decays, possibly indicative of on-off intermittency.

While we have identified the origin of the bursting dynamics as the intermit-

tent interaction of the ring laser and injection laser fields and have modeled the

dynamics successfully, the actual cause of the frequency wandering in the ring laser

is undetermined, and under current investigation.
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Chapter 7

Noise-Induced Burst Synchronization

The synchronization of bursting systems is highly relevant to understanding aspects

of communication. A question of great general interest is whether two dynamical

systems subject to a common noise background will synchronize their bursts, and if

so, is there a noise threshold at which the synchronization occurs? Here, we report

experiments carefully designed to study these questions quantitatively in a way that

is currently difficult, if not impossible, with many complex, bursting systems. We

note that the synchronization of uncoupled chaotic dynamical systems driven by

a common noise source is a topic that has raised much controversy over the years

[125, 126, 127, 128, 129, 130].

7.1 Noise-Induced Synchronization

Constructive effects of noise on dynamic systems have been reported, including noise

induced-pattern formation [131] and stochastic resonance [132, 133, 134, 135]. Noise
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induced order may be observed when the noise signal shifts the chaotic dynamics of

the system onto a more periodic trajectory, reducing the largest Lyapunov exponent

of the system to below zero [136, 137, 126, 138]. This allows for identical noise-

induced synchronization, as matched systems with common noise would shift to

identical trajectories.

The first report of such behavior [125] considered a noisy logistic map and

the Lorenz attractor. However, the conclusion of noise induced synchronization in

this case was due to finite precision in the numerical integration of the models;

in fact, the largest Lyapunov exponent for the logistic map example never dipped

below zero [126, 127]. This initial misstep, followed by studies examining systems

where synchronization required a biased noise source [139, 140, 141], culminated in

a supporting experimental study of a Chua circuit [128] and the premature general

conclusion that unbiased noise could not induce synchronization.

However, counterexamples of unbiased noise-induced identical synchronization

have been reported in recent years [129, 142, 143], including a study of a self-excited

neuron model [144]. In an recent experimental and numerical studies, identical noise

induced synchronization was demonstrated in a CO2 laser displaying homoclinic

bursting dynamics.

Recently Zhou and Kurths [130] have shown that weak synchronization, specif-

ically noise induced phase synchronization of non-identical Rössler systems, may be

induced by unbiased noise without driving λ1 ≤ 0.

Like phase synchronization, burst synchronization is an example of weak syn-

chronization – the individual oscillations within a burst need not be synchronized in

amplitude or phase – only the burst envelopes are correlated between the systems.

In this chapter, we study noise induced synchronization of burst dynamics in erbium-

doped fiber ring-lasers (EDFRLs). The intensity bursts are initiated by injection

of a common, weak, optical signal into two nearly identical EDFRLs. When the

injected monochromatic signal is constant in power, the intensity bursts in the two

lasers are unsynchronized with a broad distribution of interburst times, as should be

expected. In these experiments, we show that a small level of unbiased broadband
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noise modulation of the common injected optical signal is sufficient to synchronize

the bursts that occur in the two lasers to a remarkable extent. We then examine

the synchronization of bursts when a weak sinusoidal modulation is applied to the

injected signal. Synchronization occurred at about the same level of modulation

strength as in the case of noise modulation. The statistical characteristics of the

bursts in a single system are unchanged from the case of constant injection for both

noise and sinusoidal modulation. [21]

7.2 Experimental Setup

The experimental set-up is displayed in Fig. 7.1. The components of the EDFRLs

are described in Section 6.2. The intracavity optical power for the EDFRLs is

approximately 9mW , and the total fiber ring lengths are approximately 41.5m and

are matched to within 1% of each other. We select a mode of operation where

both EDFRLs display a single-peaked spectrum and are tuned to within 5GHz of

each other and centered at λ = 1557.7nm, with a full width at half maximum of

approximately 0.6nm.

A common, constant, optical signal, also at λinj = 1557.7nm, is injected into

the rings using 70/30 fiber-optic evanescent field couplers, stimulating large in-

tensity bursts in the ring-lasers. The constant signal source is a tunable external

cavity semi-conductor diode laser (ECSL). This signal may be amplitude modulated

with a lithium-niobate electro-optic modulator (EOM) (JDS-Uniphase, Model MZ-

150-002103). An all-fiber polarization controller ensures maximum transmittance

through the modulator. A function generator (Stanford Research Systems, Model

DS345, 30MHz) is used to drive the EOM with noise or periodic waveforms. The

injection signal is split equally between the two ring-lasers using a 50/50 coupler.

Light from the EDFRLs is extracted with 70/30 couplers, and the dynamics

are studied by measuring the intensities with 125MHz bandwidth photo-detectors

(PD) and a 1GHz digital sampling oscilloscope. All experimental data sets studied
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Figure 7.1: Experimental Setup: Two nearly identical Erbium-Doped Fiber Ring-
Lasers (EDFRLs) of cavity length ≈ 41.5m are injected with a common, weak optical
signal. The EDFRLs are pumped about ten times above threshold. Injection from
the External Cavity Semiconductor diode Laser (ECSL), frequency matched to the
EDFRLs, induces bursting in the EDFRLs. The ECSL output may be amplitude
modulated with the Electro-Optic Modulator (EOM) driven by the Function Gen-
erator. Optical isolators integrated in the Erbium-Doped Fiber Amplifiers (EDFA)
ensure light-wave propagation in the direction indicated by the arrows only. The
EDFRL output intensities are measured using 125MHz photo-detectors (PD) and
a 1GHz bandwidth Digital Sampling Oscilloscope (DSO).
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Figure 7.2: The bursting dynamics of the EDFRLs are uncorrelated with constant
injection (a), but shift to synchronized behavior with unbiased noise modulation
of the optical injection signal (b). The component intensity fluctuations are not
necessarily matched in amplitude or phase (b).

here span a two second window and contain one million data points, with a sampling

rate of 5 × 105 samples/sec.

7.3 Noise-Induced Burst Synchronization

The bursting dynamics of the EDFRLs, with an injection power Pinj = 32µW and

a circulation power of PRL ≈ 9mW circulating in the ring cavity, are plotted in

Fig. 7.2. Fig. 7.2(a) displays the case when the injected signal is unperturbed, re-

sulting in the expected uncorrelated bursting. When a small amplitude, unbiased
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Figure 7.3: High resolution (∼ 13 bits), AC coupled measurements of a single ED-
FRL injected with noise modulated optical signal (a), and the optical noise signal (c)
are displayed with their power spectra (b&d, respectively). The EDFRL spectrum
peaks at νrel ≈ 45kHz, and the noise is effectively white, at the 25MHz sampling
frequency. The EDFRL is pumped well above threshold and Mnoise = 2 × 10−2.
The normalized probability distribution of the unbiased optical noise (f) shows a
clipped, nearly-Gaussian profile. An ensemble averaged cross correlation of individ-
ual burst-noise pairings (e) is nearly featureless, showing no indication of identical
or phase synchronization of the EDFRL dynamics to the optical noise.

noise-modulation is applied to the injection signal, a dramatic shift to burst synchro-

nization is observed, as seen in Fig. 7.2(b). The strength of the noise modulation is

measured by the ratio of the standard deviation of the injected power to its mean,

Mnoise ≡ σ(Pinj)/〈Pinj〉 = 2× 10−2 . Contrasting Figs. 7.2(a) and (b), the shift from

uncorrelated to synchronized bursting is qualitatively evident.

The EDFRL intensities display bursts, consisting of large amplitude relaxation

oscillations at about νrel = 45kHz. The relative amplitudes and phases of these fluc-

tuations are not necessarily matched, as is illustrated in Fig. 7.2(c), a magnification

of a slice of the dynamics in Fig. 7.2(b).

High resolution (∼ 13bit), AC coupled simultaneous measurements of a single

bursting ring laser and the modulated optical injection signal were taken in an
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attempt to discern if there are any simple correlations between the two time series.

A single injection induced burst is shown in Fig. 7.3(a), where the injection strength

is quantified by the ratio Pinj/PRL = 3.6×10−3 with a noisy modulation of Mnoise =

2 × 10−2. The power spectrum of the bursting time series shows a strong peak at

νrel ≈ 45kHz, Fig. 7.3(b). As always, u(ν) represents the Fourier transform of an

intensity time series.

Figure 7.3(c) shows a sample of the unbiased noise modulation. The noise

modulation has a near Gaussian intensity probability distribution, and a bandwidth

of approximately 15MHz which is effectively white noise for the dynamical times

scales involved. The flat aspect of the modulation spectrum is demonstrated in

Fig. 7.3(d). The normalized probability distribution of the optical noise intensities

is plotted in Fig. 7.3(f) with the experimental values represented by asterisks, and

the solid line is a χ2 fit of a unbiased Gaussian function.

To examine the possibility of a simple correlation between the bursting dynam-

ics and the modulation signal, approximately 30 bursts were isolated with leading

and lagging buffers of 0.1ms. The matching portions of the optical noise signal are

identified, forming burst-noise pairs. The ensemble average of cross correlations of

these burst-noise pairs is shown in Fig. 7.3(e) and is nearly featureless. Neither

a spike, indicating intensity synchronization, nor periodic oscillations, indicating

phase synchronization, are observed. Similar results are found when we perform the

same ensemble cross-correlation calculation with burst-sinusoidal modulation pairs,

or with low band-pass filtered noise modulation.

While the relative behavior of the ring dynamics shifts dramatically towards

synchronization, the statistics of the bursting dynamics of an individual ring remain

unaffected. Normalized probability distributions of the interburst times, ∆T , and

normalized burst intensities, Ip/〈I〉, are plotted in Fig. 7.4(a) and (b), respectively,

for the constant injection case (circles) and Gaussian white noise modulated injection

(squares) as well as unbiased sinusoidal modulation (diamonds) at νmod = νrel =

45kHz. As in Section 6.5, the interburst times were found by determining the time

of the dominant peak within individual bursts. This method was demonstrated in
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Figure 7.4: The normalized probability distributions of inter-burst times ∆T (a) and
normalized burst intensities Ip/〈I〉 (b) for the constant injection case (circles) and
Gaussian white noise modulated injection (squares) as well as unbiased sinusoidal
modulation (diamonds) at νmod = νrel = 45kHz. In all three cases the burst times
follow similar distributions. The slope −1.5 power law behavior from ∆T = 3 ×
10−1ms to 1ms is a possible indication of stochastically driven on-off intermittency
[26, 35]. The injection modulated data sets were obtained with modulation strengths
of Mnoise = Msine = 2 × 10−2.
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Fig. 6.13. The burst intensity, Ip, is the intensity of this peak. The strength of

the noise and sine modulations are matched, Mnoise = Msine = 2 × 10−2, where

Msine ≡ 0.5∆Pinj/〈Pinj〉 and ∆Pinj = max(Pinj)−min(Pinj). In all three cases the

burst times follow similar distributions. Therefore, even though modulation of the

injection signal induces burst synchronization, it does not appreciably modify the

overall bursting dynamics!

It is also important to note that for ∆T ranging from 3 × 10−1ms to 1ms

the inter-burst times closely follow a power law with slope −3/2. This is a possible

indication that the injection induced bursting displays on-off intermittency [26, 35],

and was noted in Section 6.5 as well. On-off intermittency is a stochastically driven

class of dynamics and is discussed in Sec 2.1.1.

7.4 Definition and Application of a Burst

Envelope

While the presence of burst synchronization is qualitatively evident in Fig. 7.2(b),

the fluctuations of the EDFRL dynamics at νrel = 45kHz obscure direct attempts

to determine the degree of synchronization. However, it is relatively straightforward

to define a burst envelope for the dynamics using the low pass filtered analytic signal

[101, 8] introduced in Section 5.2.2, Eqn. (5.7), and repeated here;

V (t) =
1

π

∫ νc

0

eiνtu(ν)dν. (7.1)

V (t) is the low-pass filtered complex analytic signal and u(ν) is the Fourier transform

of the intensity time-series. We are not concerned with the nanosecond time-scale

fluctuations intrinsic to the EDFRL dynamics. We only wish to maintain the in-

tegrity of the bursting dynamics observed in the injected ring laser. Therefore, we

select a cut-off frequency, νc = 50kHz, slightly larger than the relaxation oscillation

components of the individual bursts. Burst synchronization is studied using the real
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amplitude A(t) of the centered complex analytic signal,

V (t)− 〈V (t)〉 = A(t)eiφ(t). (7.2)

Hence A(t) defines an envelope over the bursting intensity dynamics of a ring-laser.

For clarification, we present the definition of the burst envelope graphically in

Fig. 7.5. Plotting the low-pass filtered analytic signal, Fig. 7.5(b), of two injection

induced bursts, Fig 7.5(a), we observe large amplitude rotations in the complex,

Re(V (t)) vs. Im(V (t)), plane at the burst times. These rotations damp to near

zero amplitude as the bursts decay. Plotting only the amplitudes of these rotations

we define the burst envelope, Fig. 7.5(c).

Re-examining burst synchronization, we again observe the shift from unsyn-

chronized bursting with a constant injection signal, Fig. 7.6(a), to burst synchro-

nization with noise modulated injection, Fig. 7.6(b). In Figs. 7.6(c) and (d) we

have shown the xy-synchronization plots of the burst envelopes, A2(t) vs. A1(t). It

is clear that burst synchronization is not present in the constant injection case,

Fig. 7.6(c). The application of noise modulation centers the plot about the diago-

nal, demonstrating the shift to burst synchronization, Fig. 7.6(d). Viewed from this

perspective, burst synchronization of the two systems driven by common noise may

be regarded as an example of generalized synchronization [43, 44, 145, 146].

7.4.1 Intermittent Phase Synchronization

Phase synchronization of the intra-burst fluctuations may be studied using the phase

φ(t) of the analytic signal VA(t)[97, 147, 18]. Here we have chosen to shift our cut-off

frequency to infinity, returning to the unfiltered complex analytic signal. Again we

observed unsynchronized and synchronized bursting in the unmodulated Fig. 7.7(a)

and noise modulated Fig. 7.7(b) intensity time series respectively. Here, the initial

5ms of the dynamics displayed in Figs. 7.2 & 7.6 are plotted. In Figs. 7.7(c) and

(d) the relative phase difference ∆φ(t) = (φ1(t) − φ2(t))/2π is plotted for the un-

modulated injection and noise modulated injection cases respectively. The nearly
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Figure 7.5: Definition of the burst envelope using the low-pass filtered analytic
signal V (t), Eqn. (7.1). V (t) performs large amplitude rotations in the complex
plane (b) corresponding to individual bursts seen in the intensity time series (a).
The amplitudes of these rotations define the burst envelope (c).
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Figure 7.6: Bursting dynamics of the EDFRLs with unmodulated injection (a) and
noise modulated injection (b). The shift to burst synchronization with noise modu-
lation is evident. (c) and (d) are xy-synchronization plots for the burst envelopes for
(a) and (b) respectively and illustrate burst synchronization with noise modulation.
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Figure 7.7: Intermittent phase synchronization of the bursting ring-laser dynamics
are seen with the application of noise modulation. Unmodulated (a) and noise
modulated (b) intensity time series are shown for the initial 5ms of the dynamics
displayed in Fig. 7.2. The relative phase differences of the two EDFRLs are shown
in (c) and (d). Nearly continuous phase slipping with varying slopes is observed in
(c), indicating an absence of phase synchronization. The relatively flat sections in
(d) indicate intermittent phase synchronization.
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continuous phase slipping with varying slopes observed in Fig. 7.7(c) demonstrates a

lack of phase synchronization in the constant injection case. In Fig. 7.7(d) we note

that ∆φ(t) is roughly constant within bursts, suggesting intermittent phase syn-

chronization. Closer inspection shows that these phase synchronized time segments

may have non-zero slopes, indicating imperfect phase synchronization.

7.5 Quantifying Burst Synchronization

7.5.1 Defining a Synchronization Measure

In determining a level of burst synchronization, we are not necessarily concerned

with the amplitude or phase of the bursting dynamics, merely whether or not the

bursts occur at the same time. Therefore, we reduce the time series to symbolic

dynamics, indicating whether or not the ring lasers are bursting at a given point in

time. We define an appropriate threshold Ath (see Fig. 7.5(c)) to identify bursts,

and generate a new time series B(t), where

B(t) ≡
{

1, A(t) > Ath

−1, A(t) ≤ Ath

. (7.3)

The amplitudes of the bursts and phases of the fluctuations within the bursts have

been eliminated in the time series B(t). Burst synchronization is easily identified

and quantified with this simplified burst time-series, which has the character of a

random telegraph signal [148]. To determine the level of burst synchronization we

calculate the zero-delay, normalized cross-correlation

C ≡ 1

N

N∑
n=1

(B1(n) − 〈B1〉)(B2(n) − 〈B2〉)

σ(B1)σ(B2)
. (7.4)

Here B1 and B2 are the burst time series for EDFRL 1 and EDFRL 2, respectively,

and N is the total number of sampled values in the time series. With these definitions

for B(t) and C we have a particularly transparent measure of synchronization; C = 1

represents perfect synchronization, C = −1 indicates complete anti-synchronization,
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Figure 7.8: An increase in the constant injected signal power results in an increase in
the standard deviation of the EDFRL intensity fluctuations (triangles, right vertical
axis). The bursts in the two lasers remain essentially uncorrelated (asterisks, left
vertical axis) for the entire range of injection power investigated.

and for C = 0 there is no relation on the average between the bursts of EDFRL 1

and EDFRL 2.

7.5.2 Injection Power

Adjustments in the power of the constant injected optical signal does not affect

the synchronization of the bursts. However, the standard deviation of the intensity

time series increases as Pinj increases. This is shown in Fig. 7.8. The right vertical

axis corresponds to the standard deviations of the intensities of EDFRLs 1 and 2,

marked by the triangles and inverted triangles, respectively. As above, the stable-

state intracavity power of the EDFRLs is held constant at PRL = 9mW . Only

the injection power is varied, and is measured directly in the ring-lasers. The left

vertical axis corresponds to the cross correlation C of the bursts, calculated from

B1(t) and B2(t), Eqn. (7.4). The asterisks indicate the mean values of C for four

repeated measurements at a given injection power. Each measurement is 2 seconds

long and contains several thousand burst events. To calculate the error bars, we

first determine C for 100ms time slices. The standard deviation of this set of cross-

correlations is calculated and plotted for a given constant injection power. Hence,

the error bars represent changes of burst correlation over short time scales – between
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Figure 7.9: Burst synchronization is studied as a function of modulation strength.
Both white-noise modulation (a) and sine modulation at 45kHz (b) show a signif-
icant transition to synchronization with increasing modulation strength. The solid
lines are empirical fits to a sigmoidal function. Mnoise is the ratio of the standard
deviation of the noise fluctuations to the average injected power, and Msine is the
ratio of the amplitude of the sinusoidal modulation to the average power.

individual 100ms time slices within a long measurement – as well as changes between

the long 2 second measurements. Therefore, we are able to see clearly that, while

the bursts grow substantially with injection power, the mean value of C varies only

slightly about zero. The minimum Pinj/PRL value corresponds to no injection from

the ECSL.

7.5.3 Synchronization with Modulation Strength

Burst synchronization is studied as a function of the modulation strength of the in-

jected power in Fig. 7.9. The effect of an increasing noisy modulation is displayed in
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Fig. 7.9(a), and increasing sinusoidal modulation amplitude in Fig. 7.9(b). The noisy

modulation strength is measured by the ratio Mnoise ≡ σ(Pinj)/〈Pinj〉, and the size of

the sinusoidal modulation is given by Msine ≡ 0.5
(
(max(Pinj) −min(Pinj)

)
/〈Pinj〉.

The minimal modulation point corresponds to no modulation in both cases. Six

consecutive experimental runs, each 2 seconds long, were used to determine the

corelation C and its error bars. As above, time slices of 100ms from the burst

time series were considered in calculating the standard deviations. The mean in-

jected power 〈Pinj〉 and the pumping of the EDFRLs are held constant, such that

〈PRL〉 = 9mW , and 〈Pinj〉/〈PRL〉 = 3.6 × 10−3, the maximum injection reported in

Fig. 7.8. The solid lines in both figures represent the χ2 fit of the observed data

points to an empirical sigmoidal function. A transition from uncorrelated bursts

(C ∼ 0) to significant synchronization (C ∼ 0.4) is found to occur at modulation

strengths of about 4 × 10−3.

7.6 Discussion

We have demonstrated that unbiased modulation is sufficient to induce burst syn-

chronization, as well as intermittent phase synchronization in an experimental sys-

tem of two nearly identical, uncoupled lasers. A clear transition to synchronization

was demonstrated for both broad-band noise and sinusoidal modulation. Surpris-

ingly, the noise modulation was as effective as the sinusoidal modulation. While

the transition to burst synchronization is clear, the mechanism of synchronization

is not. There are no obvious correlations between the modulation signals and the

EDFRL intensity time series. The burst synchronization suggests generalized syn-

chronization of the EDFRLs to the modulation signal, as indicated by the auxiliary

system method [44].
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Chapter 8

Conclusions and Future Research

Ongoing experimental, numerical, and analytic studies of synchronization and chaos

in a diverse set of dynamic systems continues to expand our understanding of the

physical world, and suggest novel applications of these systems. Of particular in-

terest are the often subtle relationships and synchronous states of coupled chaotic

optical systems. In this dissertation we studied the nonlinear dynamics and syn-

chronization, and their underlying physical mechanisms, in two solid state laser

systems: Nd3+:YAG laser arrays and optically injected Erbium Doped Fiber Ring

Lasers (EDFRL).
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8.1 Synchronization of a Linear Nd:YAG Three

Laser Array

Experiments investigating the dynamics and synchronization of a linear three-laser

array were performed [17]. This was the first investigation of synchronization in a

system of more than two lasers. The array is nearest neighbor coupled through over-

lapping evanescent fields. The low relaxation oscillation frequency of the Nd:YAG

lasers allowed for excellent resolution of the array dynamics. Without modulation,

the array experienced amplitude instabilities, due to the coupling of the lasers. Soft

modulation induced sustained chaotic dynamics, and hard loss modulation resulted

in chaotic Q-switched pulses.

Experimental and numerical observations revealed strong synchronization be-

tween the pair of outer lasers in the three laser array (1&3), without any clear

relationship with the central laser (2). This synchronized state persisted at all mod-

ulation levels. Analysis of Eqns. (4.19) showed that the intensity synchronization

manifold for the side lasers is stable, and that there is no stable manifold where all

three lasers are identically synchronized.

The intensity dynamics of the three lasers were estimated to be five-dimensional

using the false nearest neighbor method [3]. This dimension agrees with the am-

plitude anti-synchronization subspace found in the analysis of Eqns. (4.19). This

subspace corresponds to the state where the side lasers are identically synchronized,

and the array is phase-locked π out of phase. This is exactly the experimentally

observed state, and is confirmed by the far field intensity profile of the laser array.

150



8.2 Phase Synchronization Entrainment of a Nd:YAG

Three Laser Array

There was strong agreement between the numerical and analytic results with ex-

perimental observations of identical synchronization between the two side lasers the

system. Despite this fact was not fully understood. Since the linear laser array was

constructed such that only nearest neighbors were coupled, synchronization of the

side lasers must depend on the mediation of the central laser, and we were still left

with the question of what dynamical relationship was involved in this dependence.

The relationship of a side laser and the central laser is a more general form of syn-

chronization, and so a more subtle analysis of the dynamics was required in order

to uncover this relationship.

By defining phase variables from the intensity time series we were able to in-

vestigate the relationship of the central and side lasers of the array. The phases

were calculated using a Gaussian frequency-filtered complex Gabor analytic signal.

This definition of phase for the array elements allowed the discovery of relationships

between the lasers that were not otherwise apparent. Additionally, the frequency

confined nature of the phase variables, due to the Gaussian filter, allowed investi-

gations of various frequency regimes and ratios of the dynamics of the laser array.

We developed a phase synchronization measure, based on a normalized Shannon

entropy, that allowed the visualization of a global phase synchronization picture.

Phase synchronization was observed in the unmodulated array in several frequency

regimes, and along a limited number of frequency ratios, Fig. 5.13. With soft mod-

ulation, the magnitude of phase synchronization increased dramatically, the syn-

chronized frequency components shifted, and additional frequency ratios evidenced

synchronization, Fig. 5.14. However, hard loss modulation, which resulted in Q-

switched intensity time series, suppressed the level of phase synchronization, due to

the discontinuous nature of the pulsing dynamics, Fig. 5.15.

Studying phase synchronization allowed relationships in the chaotic linear laser
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array that were otherwise obscured to be clearly evidenced. Introducing a Gaussian

frequency-filtered phase variable to study nonstationary noisy data is clearly advan-

tageous. This technique, developed as part of this dissertation, should be applicable

to a wide range of physical and biological investigations.

Additionally, we studied phase entrainment of the laser array to the sinusoidal

modulation signal. Peaks in the intensity time series were used as phase markers.

A confined distribution of the discrete phase markers with respect to a reference

phase rotating at the modulation frequency indicates phase entrainment. We de-

fined a measure of entrainment using the normalized Shannon entropy, and found

entrainment monotonically increased with modulation strength.

8.3 Injection Induced Bursting in an Erbium-Doped

Fiber Ring Laser

We observed the surprising phenomena of bursting in an EDFRL due to a weak,

frequency-matched optical injection signal. In most systems, a tuned injection signal

would stabilize intensity fluctuations. However, instead of constraining the fast, low

amplitude fluctuations intrinsic to the EDFRL, the optical injection induced giant

intensity bursts, irregularly spaced in time. The bursting dynamics were investigated

experimentally and numerically.

The EDFRL output is composed of thousands of longitudinal modes, resulting

in the FWHM of 600pm observed in Fig. 3.10. Experimental time-resolved hetero-

dyne measurements revealed that the lasing modes of the ring laser slowly wander

over a range of MHz, independent of injection, Fig. 6.11. The intermittent interac-

tion of the minimally detuned mode and the monochromatic injected light field lead

to brief periods during which the EDFRL locks to the injection laser, after which

it escapes the frequency-locking regime. This produces bursts in the intensity time

series, Fig. 6.12. Since only this single mode of the ring laser interacted with the
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injected field, a phenomenological model of the injected laser system was developed

that considered only the minimally detuned mode of the ring laser. The wandering of

the EDFRL modes was modeled using exponentially correlated Ornstein-Uhlenbeck

noise. Numerical simulations using this model reproduced the critical qualitative

and statistical features of the injected ring laser’s burst dynamics. Both numerical

and experimental intensity time series produced normalized probability distribu-

tions displaying power-law decays with a slope of −3/2, which is possibly indicative

of on-off intermittency.

8.4 Noise Induced Burst Synchronization in

Erbium-Doped Fiber Ring Lasers

Beyond examining bursting dynamics induced by a constant optical injection, we

also studied the effects of unbiased noise modulation of the injection signal on the

bursting dynamics. Specifically, we were addressed a question of great general in-

terest, “Will two dynamically bursting systems subject to a common unbiased noise

background synchronize their bursts?” The synchronization of bursting systems is

highly relevant to understanding aspects of communication. The research conducted

for this dissertation included experiments carefully designed to answer this question

quantitatively.

Two nearly identical independent EDFRLs, injected with a common optical

injection signal, produced dynamically similar, but uncorrelated bursting dynamics.

Modulation of the injection signal using unbiased Gaussian-white noise resulted in

a dramatic shift to burst synchronization. While burst synchronization was qualita-

tively evident, the decaying intensity fluctuations which formed the bursts prevented

easy quantitative analysis of the noise induced synchronization. These internal fluc-

tuations were neglected through the definition of a burst envelope from the ampli-

tude of the low-pass frequency-filtered analytic signal, calculated from the bursting
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intensity time series. The EDFRL dynamics were reduced to symbolic dynamics

by imposing a threshold on the burst envelopes. A synchronization measure was

defined using the normalized zero-lag cross-correlation of the symbolic dynamics.

Using this synchronization measure to study burst synchronization as a function

of modulation strength, a clear transition to synchronization was demonstrated

for both broad-band noise and sinusoidal modulation, Fig. 7.9. Surprisingly, the

noise modulation was nearly as effective as the sinusoidal modulation. There were

no obvious correlations between the modulation signals and the EDFRL intensity

time series. The noise induced burst synchronization observed suggests generalized

synchronization of the EDFRLs with the modulation signal, as indicated by the

auxiliary system method [44].

Despite this dramatic shift to synchronized bursting dynamics with modulation

of the optical injection, the qualitative and statistical features of the dynamics were

unaffected.

8.5 Continuing and Future Research

8.5.1 EDFRL Mode Dynamics

While we understand that the wandering EDFRL mode interactions with the in-

jected light field result in the bursting dynamics, we have yet to address the origins

of the mode wandering itself. The phenomenological Class B injected laser model

proposed in Section 6.4 successfully reproduced qualitative and quantitative fea-

tures of the injected EDFRL bursting dynamics. However, the model did nothing

to address the deeper question of the origins of the mode wandering. Possible con-

nections between the fluorescence time τf = 10ms and the slow time scale of the

mode wandering need to be addressed, and the contribution of the broad gain region

of Er3+ doped fiber to the dynamics needs to be understood. Nonlinearities due to

the fiber cavity need to be addressed as well. In order to explain these wandering
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dynamics it may be necessary to utilize the delay differential model presented in

Section 3.5.4, while incorporating the nonlinear effects of the optical fiber cavity

and the multimode interactions.

Understanding the origins and dynamics of the observed EDFRL mode wan-

dering may have significant applications to the development of high power fiber

laser arrays, while also improving our fundamental understanding of the system.

Straightforward methods of constraining the mode dynamics, such as introducing a

Faery-Pérot filter to the ring cavity, may be a beneficial line of inquiry.

8.5.2 Identifying the Mechanism of Noise Induced Burst

Synchronization in EDFRLs

Improving our understanding of the mode wandering mechanism may also provide

insight into the mechanism responsible for noise induced synchronization. As previ-

ously stated, experimental heterodyne measurements of the injected EDFRL system

have identified longitudinal mode wandering as the source of the bursting dynamics.

However, exactly how the modulation of the injection signal leads to the synchro-

nization of the mode wandering, and hence the observed bursting dynamics is still

an open question. Preliminary simulations using the simplified Class-B laser model,

Eqns. (6.18), with modulation of the Einj parameter alone, have been unable to

reproduce the synchronization observed experimentally.

A variety of nonlinear effects intrinsic to the ring laser and the modulation of

the injection signal may cooperate to produce the observed burst synchronization.

The simple modulation of the injected field amplitude mentioned above produces

oscillations in the frequency-locking range that are common to both ring lasers.

However, this effect alone is too weak to explain the observed noise induced burst

synchronization. An additional weak effect of injection modulation is the result-

ing modulation of the effective cavity length, nL, due to the optical Kerr effect,

Eqn. 3.31. As the cavity length determines the standing wavelengths supported by
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the cavity, the modulation of the injection intensity may therefore directly effect the

frequency of the modes supported. The range of the optical frequency modulation

is written as

∆νKerr =
mc

n2L
∆n, (8.1)

where m is the ratio of the cavity length L to the peak wavelength of the laser

λ = 1.58µm. The index of refraction of the single mode fiber is n = 1.44, and

∆n = n2∆Iinj . The Kerr index n2 ≈ 3 × 10−20, and ∆Iinj = MnoisePinj/πa
2 , where

a = 5µm is the effective radius of single mode optical fiber. With these parameters,

the frequency modulation is only ∆νKerr ≈ 0.1Hz. Even incorporating the full

30dB, small signal gain of the erbium doped fiber amplifier ∆νKerr is only on the

order of 100Hz. This is far too weak to entrain the intrinsic MHz mode wanderings

of the EDFRL, but may contribute to the synchronization.

Another possible contributing effect of the modulation is frequency modula-

tion of the optical injection related to the modulation of the injection laser. The

lithium niobate electro-optic modulator functions by rotating the polarization of the

electric field between two linear polarizers, hence modulating the amplitude of the

transmitted field. This phase modulation between the linear polarizers is intrinsi-

cally related to frequency modulation [149], which may assist in the synchronization

of the EDFRL bursting dynamics. Experimental, numerical, and analytical studies

of the degree of frequency modulation, as well as of its effects, are needed.

Contributing synchronization effects may be identified by multimode interac-

tions, such as cross-phase modulation and four wave mixing [62] due to nonlinearities

imposed on the system by the fiber optic cavity. Additional effects may be due to

the broad gain region of the erbium doped fiber.

8.5.3 EDFRLs With Variable Coupling

A rich coupled laser experiment that will allow us to experimentally investigate the

interactions of the wandering modes and synchronization of coupled EDFRLs has

been constructed. The experiment, pictured in Fig. 8.1, consists of two nearly iden-
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Figure 8.1: Variable coupling EDFRL experiment. The nearly identical fiber ring
lasers are coupled through mutual injection. This configuration gives independent
control of the two coupling channels, allowing one-way, symmetric and asymmetric
coupling and synchronization studies of chaotic systems.

tical ring lasers with coupling through mutual injection. Fiber lengths throughout

are carefully matched, and arrows indicate the direction of light propagation. Hope-

fully, analysis of the mode dynamics of the coupled ring lasers will provide further

insight into their origins and behavior.

The variable attenuators in the coupling channels in Fig. 8.1 will allow the

experimenter to independently control the proportion of light being injected from

one ring laser into the other. Hence, we will be able to investigate unidirectional,

symmetric, and asymmetric coupling configurations, as well as the synchronization,

if any, that results. In this case, the fast dynamics of the ring lasers are likely
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to dominate, and it will be necessary to utilize a delay differential model such as

Eqns. (3.45, 3.46, & 3.47) in order to numerically study the dynamics. Introducing

electro-optic elements such as phase modulators and electro-optic modulators into

the ring cavities will allow experimental investigations of the propagation and com-

munication of perturbations of one ring laser to the other in a variety of coupling

configurations.

These experiments will allow for investigation and development of measures

of information transfer, and for development of detection algorithms for identifying

drive-response relationships in chaotic systems [150, 151, 152]. The results of these

studies may prove applicable to studies of complex dynamics systems in which the

nature of the coupling between the system elements is unknown, and in which there

is only limited experimental control. Such systems are pervasive in chemistry and

biology.
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[23] O.E. Rössler. Equation for continuous chaos. Phys. Lett. A, 57(5):397–8, 1976.

[24] J.-P. Eckmann. Roads to turbulence in dissipative systems. Rev. Mod. Phys,
53(4 pt.1):643–54, 1981.

[25] J.P. Gollub and H.L. Swinney. Onset of turbulence in a rotating fluid. Phys.
Rev. Lett., 35(14):927–30, 1975.

[26] J. F. Heagy, N. Platt, and S. M. Hammel. Characterization of on-off intermit-
tency. Phys. Rev. E, 49(2):1140–50, 1994.

160



[27] S.C. Venkataramani, T.M. Antonsen, Jr., E. Ott, and J.C. Sommerer. On-off
intermittency: Power spectrum and fractal properties of time series. Physica
D, 96(1-4):66–99, 1996.

[28] M.J. Feigenbaum. Quantitative universality for a class of nonlinear transfor-
mations. J. Stat. Phys., 19(1):25–52, 1978.

[29] M.J. Feigenbaum. The universal metric properties of nonlinear transforma-
tions. J. Stat. Phys., 21(6):669–706, 1976.

[30] A. Libchaber, C. Laroche, and S. Fauve. Period doubling cascade in mercury;
a quantitative measurement. J. Physique Lett., 43:L211, 1982.

[31] F.R. Arecchi and F. Lisi. Hoping mechanism generating 1/f noise in nonlinear
systems. Phys. Rev. Lett., 49(2):94–8, 1982.

[32] L.F. Olsen and H. Degn. Chaos in biological systems. Quart. Rev. Biophys.,
18:165, 1985.

[33] Y. Pomeau and P. Manneville. Intermittent transition to turbulence in dissi-
pative dynamical systems. Commun. Math. Phys., 74(1):189–97, 1980.

[34] N. Platt, E.A. Spiegel, and C. Tresser. On-off intermittency: A mechanism
for bursting. Phys. Rev. Lett., 70(3):279–82, 1993.

[35] T. John, U. Behn, and R. Stannarius. Fundamental scaling laws of on-off
intermittency in a stochastically driven dissipative pattern-forming system.
Phys. Rev. E, 65(04):6229, 2002.

[36] T. Yamada and H. Fujisaka. Stability theory of synchronized motion in
coupled-oscillator systems. ii. Prog. Theor. Phys., 70(5):1240–8, 1983.

[37] T. Yamada and H. Fujisaka. Stability theory of synchronized motion in
coupled-oscillator systems. iii. Prog. Theor. Phys., 72(5):885–94, 1984.

[38] V.S. Afraimovich, N.N. Verichev, and M.I. Rabinovich. Stochastic synchro-
nization of oscillators in disspative systems. Inv. VUZ Rasiofiz., 29:795–803,
1986.

[39] L.M. Pecora and T.L. Carroll. Synchronization in chaotic systems. Phys. Rev.
Lett., 64(8):821–4, 1990.

[40] M.G. Rosenblum, A.S. Pikovsky, and J. Kurths. From phase to lag synchro-
nization in coupled chaotic oscillators. Phys. Rev. Lett., 78(22):4193–6, 1997.

[41] A.S. Pikovsky. Sov. J. Commun. Electron., 30:85, 1985.

[42] E.F. Stone. Frequency entrainment of a phase coherent attractor. Phys. Lett.
A, 163(5-6):367–74, 1992.

161



[43] N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D. I. Abarbanel. Gen-
eralized synchronization of chaos in directionally coupled systems. Phys. Rev.
E, 51(2):980–94, 1995.

[44] H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik. Generalized synchro-
nization of chaos: The auxiliary system approach. Phys. Rev. E, 53(5):4528–
4535, 1996.

[45] J.D. Jackson. Classic Electrodynamics. John Wiley & Sons Inc., New York,
3rd edition, 1998.

[46] E. Merbacher. Quantum Mechanics. John Wiley & Sons Inc., New York, 3rd
edition, 1998.

[47] G.R. Gray. Noise in Semiconductor Lasers. PhD thesis, Georgia Institute of
Technology, 1990.

[48] K.S. Thornburg, Jr. Synchronization of Coupled Solid-State Lasers. PhD
thesis, Georgia Institute of Technology, 1998.

[49] E. Hecht. Optics. Addison-Wesley, Reading, Massachusetts, 3rd edition, 1998.

[50] H. Haken. Analogy between higher instabilities in fluids and lasers. Phys.
Lett. A, 53A(1):77–8, 1975.

[51] C.O. Weiss, W. Klische, P.S. Ering, and M. Cooper. Instabilities and chaos of
a single-mode NH3 ring laser. Opt. Commun., 52(6):405–8, 1985.

[52] F.T. Arecchi, G.L. Lippi, G.P. Puccioni, and J.R. Tredicce. Deterministic
chaos in laser with injected signal. Opt. Commun., 51(5):308–14, 1984.

[53] J.E. Geusic, H.M. Marcos, and L.G. Van Uitert. Laser oscillations in Nd-doped
yttrium aluminum gallium+gadoinium garnets. App. Phys. Lett., 4(10):182,
1964.

[54] T. Kimura and K. Otsuka. Response of a cw Nd3+:YAG laser to sinusoidal
cavity perturbations. IEEE J. Quant. Electron., 6:764–9, 1970.

[55] W. Koechner. Solid State Laser Engineering. Springer-Verlag, Berlin, 5th
edition, 1999.

[56] L. Fabiny. Dynamics of a Coupled Solid State Laser Array. PhD thesis,
Georgia Institute of Technology, 1992.

[57] E. Desurvire. Erbium Doped Fiber Amplifiers: Principles and Applications.
John Wiley & Sons Inc., New York, 1994.

[58] G.P. Agrawal. Fiber-Optic Communication Systems. John-Wiley & Sons Inc.,
New York, 2nd edition, 1997.

162



[59] Quinton L. Williams. Fast Temporal Dynamics of the Erbium-Doped Fiber
Ring Laser. PhD thesis, Georgia Institute of Technology, 1996.

[60] G.D. VanWiggeren and R. Roy. Transmission of linearly polarized light
through a single-mode fiber with random fluctuations of birefringence. App.
Opt., 38(18):3888–92, 1999.

[61] G.P. Agrawal. Nonlinear Fiber Optics. Academic Press, San Diego, 2nd edi-
tion, 1995.

[62] D.L. Hart. Nonlinear Dynamics of Multiwave Mixing in an Optical Fiber. PhD
thesis, Georgia Institute of Technology, 1996.

[63] H.D.I. Abarbanel, M.B. Kennel, and C.T. Lewis. Chaotic dynamics in erbium
doped fiber ring lasers. Phys. Rev. A, 60(3):2360–74, 1999.
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