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Department of Physics

The work presented in this thesis studies the phonomena of synchronization

and bursting in dynamical systems.

Chapter I introduces the problems that are studied.

In the second chapter the bubbling transition is studied. We build theoretical

models to derive the properties of a dynamical system containing an invariant

manifold, when the system is perturbed in the direction transverse to the invariant

manifold. We present a complete study that includes consideration of all generic

bifurcations that may lead to bubbling.

In the third chapter a useful method of looking at weather model data is

described. This method allows to accurately extract wave packet envelopes from

atmospheric wind velocity data. We also describe possible practical applications

of the method.



The last chapter describes a new data assimilation technique for numerical

weather prediction. In the context of numerical weather prediction, data assim-

ilation is the method of determining the best guess of the current state of the

atmosphere, which is then used to make the subsequent forecast. From the point

of view of dynamical systems, data assimilation acts as coupling between the nu-

merical weather model and the atmosphere. In broad sense, we desire to achieve

perfect syncronization between the atmosphere and the model, thus leading to

good quality forecasts. Due to model imperfections, measurement errors, and

sparceness of the atmospheric data, the synchronization is not perfect. We ob-

served bursting in the RMS error of the best guess state that has a similar nature

to the bursting in the synchronization studies of Chapter I. Although study of the

bursts of RMS error in determining the best guess state from the bubbling tran-

sition point of view is beyond the scope of this thesis, some preliminary results

hint that these bursts may be explained as bubbling.
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Chapter 1

Introduction

The work presented in this thesis studies the phonomena of synchronization and

bursting in dynamical systems.

Chapter I introduces the problems that are studied.

In the second chapter the bubbling transition is studied. We build theoretical

models to derive the properties of a dynamical system containing an invariant

manifold, when the system is perturbed in the direction transverse to the invariant

manifold. We present a complete study that includes consideration of all generic

bifurcations that may lead to bubbling.

In the third chapter a useful method of looking at weather model data is

described. This method allows to accurately extract wave packet envelopes from

atmospheric wind velocity data. We also describe possible practical applications

of the method.

The last chapter describes a new data assimilation technique for numerical

weather prediction. In the context of numerical weather prediction, data assimi-

lation is the method of determining the best guess of the current state of the at-

mosphere, which is called analysis. Analysis is then used to make the subsequent

forecast. From the point of view of dynamical systems, data assimilation acts as
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Figure 1.1: This plot shows the RMS error of the analysis verified by the ”truth”.

Results from 500,000 data assimilation cycles are shown.

coupling between the numerical weather model and the atmosphere. In broad

sense, we desire to achieve perfect syncronization between the atmosphere and

the model, thus leading to good quality forecasts. Due to model imperfections,

measurement errors, and sparceness of the atmospheric data, the synchronization

is not perfect. We observed bursting in the RMS analysis error that has a similar

nature to the bursting in the synchronization studies of Chapter I. A sample of

the bursing behavior is presented in Figure 1.1. Although study of the bursts

of RMS analysis error from the bubbling transition point of view is beyond the

2



scope of this thesis, some preliminary results hint that these bursts may be ex-

plained as bubbling. In the following paragraphs we provide short abstracts for

the three projects described in this thesis.

Bifurcation scenarios for bubbling transition. Dynamical systems with

chaos on an invariant submanifold can exhibit a type of behavior called bubbling,

whereby a small random or fixed perturbation to the system induces intermittent

bursting. The bifurcation to bubbling occurs when a periodic orbit embedded

in the chaotic attractor in the invariant manifold becomes unstable to pertur-

bations transverse to the invariant manifold. Generically the periodic orbit can

become transversely unstable through a pitchfork, transcritical, period doubling,

or Hopf bifurcation. In this work a unified treatment of the four types of bub-

bling bifurcations is presented. Conditions are obtained determining whether the

transition to bubbling is soft or hard. For soft bubbling transitions, the scaling of

the maximum burst amplitude with the parameter is derived. For both hard and

soft transitions the scaling of the average interburst time with the bifurcation

parameter is deduced. Both random (noise) and fixed (mismatch) perturbations

are considered.

Extraction of the envelopes of Rossby wave packets.Packets of Rossby

waves play an important role in the transfer of kinetic energy in the extra-tropics.

The ability to locate, track, and detect changes in the envelope of these wave pack-

ets is vital to detecting baroclinic downstream development, tracking the impact

of the analysis errors in numerical weather forecasts, and analyzing the forecast

effects of targeted weather observations. In this work, it is argued that a well

known technique of digital signal processing, which is based on the Hilbert trans-

form, should be used for extracting the envelope of atmospheric wave packets.

3



This technique is robust, simple, and computationally inexpensive. The superi-

ority of the proposed algorithm over the complex demodulation technique (the

only technique previously used for this purpose in atmospheric studies) is demon-

strated by examples. The skill of the proposed algorithm is also demonstrated by

tracking wave packets in operational weather analyses from the National Centers

for Environmental Prediction (NCEP).

A Local Ensemble Kalman Filter for atmospheric data assimilation.

Recent studies have shown that, when the Earth’s surface is divided up into lo-

cal regions of moderate size, vectors of the forecast uncertainties in such regions

tend to lie in a subspace of much lower dimension than that of the full atmo-

spheric state vector of such a region. In this work we show how this finding can

be exploited to formulate a potentially accurate and efficient data assimilation

technique. The basic idea is that, since the expected forecast errors lie in a lo-

cally low dimensional subspace, the analysis resulting from the data assimilation

should also lie in this subspace. This implies that operations only on relatively

low dimensional matrices are required. The data assimilation analysis is done

locally in a manner allowing massively parallel computation to be exploited. The

local analyses are then used to construct global states for advancement to the

next forecast time. The method, its potential advantages, properties, and imple-

mentation requirements are illustrated by numerical experiments on a 40-variable

Lorenz model. It is found that near-optimal performance can be achieved with

very modest computational cost.

4



Chapter 2

Bifurcation Scenarios for Bubbling Transition

1

2.1 Introduction

In this paper we will be concerned with dynamical systems that contain an invari-

ant manifold embedded in their phase space and for which there exists a chaotic

attractor in the invariant manifold. Such systems are common in a variety of

physical situations, and they display interesting dynamical behaviors. Types of

such dynamical behavior include on-off intermittancy (Pikovsky 1984; Fujisaka

and Yamada 1986; Yu et al. 1990 Platt et al. 1993; Venkataramani et al. 1995),

riddled basins of attraction (Alexander et al. 1992), and bubbling (Ashwin et

al. 1994; Heagy et al. 1995; Gauthier and Bienfang 1996; Venkataramani et

al. 1996). Examples of systems having invariant manifolds include systems with

spatial symmetry (Ott and Sommerer 1994), predator-prey models (Ott et al.

1993; Sommerer and Ott 1993; Lai et al. 1996), magnetic dynamos (Sweet 2002),

1This chapter is a verbatim representation of the paper A. V. Zimin, B. R Hunt and E. Ott,

2003: Bifurcation Scenarios for Bubbling Transition. Phys. Rev. E, 67, 016204.

5



and synchronized chaotic oscillators (Pecora and Carroll 1990). The subject of

this paper is the transition to bubbling. Following (Ashwin et al. 1994), we

introduce a normal parameter – a parameter whose variation effects the system

dynamics off of the invariant manifold but leaves the dynamics within the in-

variant manifold unchanged. For example, in the case of synchronization of two

coupled chaotic oscillators [as in Eqs. (2.1)], the coupling strength is the nor-

mal parameter. The bubbling transition occurs when, as a normal parameter is

varied, a periodic orbit embedded within the chaotic attractor first becomes un-

stable to perturbations transverse to the invariant surface (Hunt and Ott 1996).

Before the transition, all periodic orbits in the chaotic attractor are transversely

stable. Beyond the bubbling transition, if the system is perturbed in a direction

transverse to the invariant manifold, orbits that come close to the transversely

unstable periodic orbits are repelled and move away from the invariant manifold.

If there is no other attractor off the invariant manifold, the orbit returns, and,

assuming that the perturbations continue, this process repeats, producing inter-

mittent bursts away from the invariant manifold. If, on the other hand, there

is another attractor not on the invariant manifold, orbits initially repelled from

the periodic orbit on the invariant manifold may go to that attractor and never

return. For definiteness, the following discussion will not consider the case where

there is another attractor not on the invariant manifold, although later on in the

paper (Sec. 6) we indicate how our results carry over to this case.

We consider the dependence of bursting on two parameters: the normal pa-

rameter and the size of perturbations transverse to the invariant manifold. These

perturbations, which we assume to be small, may be random (noise) or fixed (as

in the case of coupled oscillators when there may be a slight mismatch between

6



the two oscillators). For a given fixed value of the normal parameter beyond the

bubbling transition, as the size of the perturbations goes to zero, but the typical

size of bursts remains finite. Thus we can define a maximum burst amplitude as

a function of the normal parameter as the maximum size of bursts in the limit

as the perturbation size goes to zero.

We distinguish between two types of bubbling transitions: soft and hard.

When a soft bubbling transition occurs, the maximum burst amplitude increases

continuously from zero as the value of the system’s normal parameter goes through

its critical value. When a hard transition occurs, the maximum burst amplitude

increases discontinuously from zero to a finite value at the bifurcation.

In this paper we investigate the transition to bubbling as the normal param-

eter of the system goes through its critical value and find the conditions on the

other parameters of the system leading to soft or hard transitions. We present

results for the dependence of the maximum burst amplitude on the normal pa-

rameter for a soft transition and the dependence of the average interburst time

on the normal parameter and the size of the perturbations for both hard and

soft transitions. As previously mentioned, the bubbling transition is marked by

the loss of transverse stability by a periodic orbit of the chaotic attractor in the

invariant manifold. In the presence of the invariant manifold, there are three

ways by which such a loss of transverse stability can occur: the eigenvalue of

the transverse map can increase through (i) +1, (ii) −1 or (iii) be complex and

increase through the unit circle. These three ways generically correspond to: (i) a

pitchfork or transcritical bifurcation, (ii) a period doubling bifurcation, and (iii)

a Hopf bifurcation 2. In (Venkataramani et al. 1996) the behavior of a system

2In case (i), the pitchfork bifurcation is generic for systems that are symmetric about the

7



undergoing a bubbling transition associated with a pitchfork and transcritical

bifurcations (case(i)) was studied, and results for the average interburst time and

maximum burst amplitude were derived. In (Yahchuk 2001) the stability of low

period orbits and the transition to bubbling due to the three generic types of

bifurcations was observed, and conditions determining whether the transition is

hard or soft were derived for a system of coupled Rössler attractors. The bifur-

cation scenarios in case (i) are explored further in (Kim and Lim 2001;Kim et

al. 2001; im et al. to be published)), while period-doubling (case(ii)) induced

bubbling is observed in (Jalnine and Kim 2002; Kim et al. 2002)). In (Kim

et al. to be published; Kim et al. 2002), the effect of both fixed and random

perturbations on the average interburst time and maximum burst amplitude are

considered. Our results for case (ii) in Section 2.4 are consistent with the scaling

results in (Kim et al. to be published; Kim et al. 2002) for average interburst

time as a function of perturbation size; however, we focus instead on the depen-

dence on the normal parameter and on those scaling regions for which bursting

is dominated by either the normal parameter or the random term.

In our paper we present a unified treatment covering all generic types of

bubbling bifurcations. The contributions of the present paper are as follows:

(i) we derive theoretically the conditions for hard and soft bubbling transitions

for three generic types of bubbling bifurcations in terms of the coefficients of

the canonical forms; (ii) we derive theoretically the scaling of the maximum

burst amplitude and average interburst time with the normal parameter, and, in

invariant manifold, while the transcritical bifurcation is generic for systems without symmetry.

A saddle-node bifurcation is not possible, because it would destroy the periodic orbit, whereas

the normal parameter does not affect the dynamics in the invariant manifold.

8



the case of interburst time, the size of perturbations transverse to the invariant

manifold; (iii) we verify our predicted scalings with the results of the numerical

experiments. We present analyses of both mismatch induced and noise induced

bubbling, but we pay particular attention to the case of noise-induced bubbling,

where we use the Fokker-Planck diffusion approximation to obtain the interburst

time scaling results. Our derivations are based on the model systems, where we

use canonical forms of the bifurcations to represent the transverse dynamics.

As a specific example of a system that our analysis might be applied to, con-

sider the general case of synchronization of two coupled oscillators, as described

by the following system of equations,

dz1

dt
= F 1(z1) + kf1(z1 − z2), (2.1a)

dz2

dt
= F 2(z1) + kf2(z2 − z1), (2.1b)

where f1,2 and F 1,2 are smooth functions, f 1(0) = f2(0) = 0, and k is a coupling

constant. For this situation k is the normal parameter in the system. First

consider the case where the oscillators are identical, F 1(z) = F 2(z) = F (z).

The synchronized state z1 = z2 represents an invariant surface embedded in the

full (z1, z2) phase space. Let x = (z1 + z2)/2 and y = (z1 − z2)/2. In these

coordinates (x, y) the dynamics in x with y = 0 represents the dynamics along

the invariant manifold. We ask, what is the effect of small perturbations to this

system caused by noise or mismatch on the dynamics in the y direction (i.e.,

transverse to the invariant manifold)? In particular, what is the effect of a small

noise of order r added to the right hand sides of Eqs. (2.1) or of a small deviation

such that the two oscillators are not identical (mismatch), ||F 1−F 2|| ∼ q << 1?

These perturbations will typically destroy the invariance of the invariant manifold

z1 = z2. In what follows we consider discrete time systems, possibly obtained
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via a surface of section from a continuous time system [e.g., Eqs. (2.1)]. If the

synchronized state z1 = z2 without noise or mismatch is chaotic, we can model

the dynamics using the following model systems.

2.2 Model systems

To simplify our analysis we assume that the chaotic dynamics on the invariant

manifold is given by xn+1 = 2xn mod 1 and that the periodic orbit that becomes

transversely unstable at the bubbling bifurcation is the fixed point x = 0. More

generally, the bifurcation may occur at a higher period orbit, but this orbit will

typically have low period (Pecora and Carroll 1990). Our results below depend

on the dynamics within and transverse to the invariant manifold in the following

ways. Within the invariant manifold, the results depend only on the largest

Lyapunov exponent of the bifurcating orbit, which we denote by h||. Transverse

to the invariant manifold, our results depend on the local dynamics in the “center

manifold” corresponding to the eigenvalue(s) on the unit circle at the bifurcation,

which we represent by a complex variable z in the case of a Hopf bifurcation and

by a real variable y for the other bifurcations. We include only the quadratic and

cubic terms in y and z that are necessary to determine the normal form for the

bifurcation – that is, to describe the bifurcation to the lowest order. For details

on center manifolds and normal forms, see (Hale and Kocak 1991).

Model for Pitchfork and Transcritical Bifurcations: For the case of a trans-

verse pitchfork or transcritical bifurcation we consider a model system of the form
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(Venkataramani et al. 1996):

xn+1 = 2xn mod 1, (2.2a)

yn+1 = [cos(2πxn) + p]yn + ayσ
n + q + rνn, (for |y| < 1), (2.2b)

where xn and yn are real, p is the bifurcation parameter with p > 0 (p < 0) above

(below) the bubbling transition and q as the mismatch parameter. The rνn term

represents noise in the system with magnitude r > 0. We assume that νn are

random numbers uniformly distributed on [−1, 1]. The term ayσ with σ = 2 or

3 in (2.2b) represents the lowest order y nonlinearity of the system at the fixed

point x = 0. We assume that |p| << 1, |q| << 1 and |r| << 1 but |a| = O(1).

The dynamics in x models the chaotic dynamics in the invariant manifold and

the dynamics in y models the dynamics transverse to the invariant manifold. In

this and the following models the equation for the y dynamics models the local

evolution of the system close to the invariant manifold. For |y| > 1, it is presumed

that (2.2b) does not apply and that there is a confining nonlinearity that sends

the orbit back to the region |y| < 1 (in particular, there is no attractor in |y| > 1).

Considering q = 0 and r = 0, the linearized y dynamics at the fixed point x = 0,

is governed by yn+1 = (1 + p)yn; thus, as p increases through zero, dyn+1/dyn

increases through +1, corresponding to a pitchfork or transcritical bifurcation in

the transverse dynamics at x = 0 fixed point. Symmetric coupling (f1 = f2) in

(2.1) is modeled by σ = 3, and asymmetric coupling (f1 �= f2) is modeled by

σ = 2. For the symmetric case, the symmetry y → −y rules out the possibility

of a y2 term in (2.2b). The term q represents a small mismatch F 1 −F 2. In the

absence of noise and mismatch we have an invariant line, y = 0, on which there

exists a chaotic invariant set generated by (2.1a). The stability of this line is

governed by the coefficient of yn in the first term on the right hand side of (2.3b).
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Since cos(2πxn) is maximum at x = 0, the period one orbit at (x, y) = (0, 0) with

q = 0 and r = 0 becomes transversely unstable as p increases through zero, and

the corresponding bifurcation is a transcritical bifurcation if σ = 2 (asymmetric

coupling) or a pitchfork bifurcation if σ = 3 (symmetric coupling). In terms of

Eqs.(2.1), p is analogous to (kc −k), where kc is the critical bubbling value of the

coupling strength k. We refer to p = 0 as the critical parameter value. Because

the local structure of a pitchfork or transcritical bifurcation (e.g. subcritical

or supercritical) is determined by the lowest order nonzero nonlinear term, we

neglect all terms of order higher than yσ. Note that the chaos in the invariant

manifold (y = 0) is unaffected by p (Eq. (2.2a) is independent of p).

Model for Period Doubling Bifurcations: For the period-doubling case we

consider a model system of the form:

xn+1 = 2xn mod 1, (2.3a)

yn+1 = −[cos(2πxn) + p]yn + ay2
n + by3

n + q + rνn, (for |y| < 1), (2.3b)

where xn and yn are real, p is the bifurcation parameter with p > 0 (p < 0)

above (below) the bubbling transition, and a, b, q and r > 0 are parameters

of the system whose values define the type of transition occurring as p goes

through 0. Again we assume that |p|, |q|, |r| << 1 and max(|a|, |b|) = O(1).

The νn are random numbers uniformly distributed on [−1, 1]. Considering q = 0

and r = 0, the linearized y dynamics at the x = 0 fixed point of (2.3a) is

yn+1 = −(1 + p)yn which becomes unstable as p increases through zero with

dyn+1/dyn decreasing through −1, corresponding to a period doubling bifurcation.

In the case of coupled oscillators (2.1) with symmetric coupling (f1 = f 2), a =

0, but with asymmetric coupling (f1 �= f2), both quadratic and cubic terms

may be present. Because the local structure of a period-doubling bifurcation is
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determined by the terms of order up to 3, we neglect all terms of order higher

than y3, and, since both the quadratic and cubic terms are important, we do not

treat the cases of symmetric and asymmetric coupling separately.

Model for Hopf Bifurcations: In the case where the transverse bifurcation of

the periodic orbit is a Hopf bifurcation, we employ the following model:

xn+1 = 2xn mod 1, (2.4a)

zn+1 = [cos(2πxn) + p]eiθzn + az2
n + bznz∗n + c(z∗n)2 + d|zn|2zn + (2.4b)

+ q + rνn, (for |z| < 1),

where zn is complex and z∗n is the complex conjugate of zn. As in the previous

cases, p and r are small real parameters. The quantities a, b, c, d, q, and r

are complex parameters of the system with |q|, |r| << 1 and |max(a, b, c, d)| =

O(1). The νn are i.i.d. complex random numbers uniformly distributed within

the unit circle. In this model complex z models the 2-dimensional dynamics

transverse to the invariant manifold, while the variable x models the dynamics

along the invariant manifold. For q = 0 and r = 0, the quantity dzn+1/dzn

evaluated at the fixed point x = 0 has its magnitude increase through unity as p

increases through zero. For θ/2π irrational this corresponds to a Hopf bifurcation.

This model includes the above mentioned pitchfork or transcritical and period

doubling bubbling bifurcations as special cases with θ = 0 being the pitchfork

or transcritical case and θ = π being the period-doubling case. Although it

is possible to get all results for period-doubling and pitchfork or transcritical

bifurcations from the model (2.4), we will use the models (2.2) and (2.3) for these

special cases to simplify the analysis. The mismatch parameter q again breaks

the invariance of the line z = 0 + 0i. We included all possible terms quadratic

in z. In previous work on the Hopf bifurcation it has been shown that out of all
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possible terms cubic in z only the term proportional to |zn|2zn is relevant to the

local structure of the bifurcation (Wan 1978).

The results we obtain for models (2.2), (2.3), (2.4) are given in Tables 2.1-2.3.

We treat the cases of mismatch (q �= 0) and noise (r �= 0) separately; when both

q and r are nonzero, the average interburst time will scale like the smaller of

the two expressions given. We claim that these results can be applied to any

generic situation exhibiting a bubbling transition. For the case of the pitchfork

or transcritical bifurcation this claim has been confirmed experimentally (see

(Venkataramani et al. 1996)).

2.3 Pitchfork and transcritical bifurcations

2.3.1 Maximum burst amplitude and stability

In this subsection we review the derivation of the theoretical result for the max-

imum burst amplitude for the case of a pitchfork or transcritical bubbling bi-

furcation in the map (2.2). We derive the results for the noiseless case r = 0

first. This derivation serves as a model for the treatments of the period doubling

and Hopf cases, and closely follows (Venkataramani et al. 1996). In the case of

symmetric coupling (σ = 3) we will show that we have a soft bubbling transition

if a < 0 and a hard bubbling transition if a > 0. In the case of asymmetric

coupling (σ = 2), we will show that qa > 0 corresponds to a hard transition, and

qa < 0 corresponds to a soft transition.

For small positive p, the factor [p + cos(2πxn)] is greater than one only in a

small region near the fixed point x = 0 of (2.1a) (since x is taken modulo 1, we

consider values of x near 1 to be near 0). Thus a burst can only be initiated
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when the chaotic x orbit comes near enough to x = 0 that it remains there long

enough for y to burst. The burst ends when x moves away from the fixed point.

In order to compute the maximum possible burst amplitude, we first consider the

dynamics when x = 0. Then y satisfies the relation

yn+1 − yn = pyn + ayσ
n + q. (2.5)

Assume for definiteness that q > 0. Then, in the case of a soft transition

(a < 0), if x = 0 then y increases but is bounded from above by the positive

solution of

p∆ + a∆σ + q = 0. (2.6)

Since the maximum value that y can reach is ∆, this value represents the max-

imum burst amplitude for all trajectories that start near y = 0. Since a∆σ is

the only negative term on the left-hand side of (2.6) , the solution for ∆ can be

estimated by ∆σ � max(p∆/|a|, |q/a|) which yields:

∆ � max((p/|a|)1/(σ−1), |q/a|1/σ). (2.7)

(In this and further equations we use � to denote ’approximately equal’ and ∼
to denote ’equal up to a constant’.) In particular, when p >> q(σ−1)/σ , we have

∆ � |p/a|1/(σ−1).

When q < 0, soft transition will occur if and only if (2.6) has a negative root

∆. Thus if σ = 2 we need a > 0 for a soft transition, while if σ = 3 we need a < 0.

In these cases, the magnitude of the negative root ∆ is given by the right side

of (2.7). In the case of noise, for asymmetric coupling (σ = 2) the transition is

always hard; because the noise can take either sign, there will be both large and

small bursts. For symmetric coupling (σ = 3), we still have a soft transition if
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a < 0 and a hard transition if a > 0. In the case of a soft transition, by arguments

similar to the one above, we have ∆ � (p/|a|)1/(σ−1) when r2/3 << p << 1.

2.3.2 Average interburst time - mismatch

In what follows we derive results for the average interburst time for soft and hard

bubbling transitions. We first consider the effect of mismatch in the noiseless

case r = 0. The analysis in the previous section shows that the nonlinear term

ayσ is insignificant when |y| << yc ∼ max((p/|a|)1/(σ−1), (q/|a|)1/σ), while when y

grows close to yc, the nonlinear term will either confine the burst (soft transition)

or rapidly accelerate the orbit to y = O(1) (hard transition). Either way, we can

estimate the interburst time as the time for |y| to reach yc in the absence of the

nonlinear term.

Assuming that x stays at its fixed point x = 0, the n-th iterate yn for n > 0

in the absence of the nonlinearity can be written as

yn =

n−1∑
i=0

(1 + p)iq =
((1 + p)n − 1)q

p
(2.8)

Hence we can compute the time n̄ for an initial point (x0, y0) = (0, 0) to reach yc

by setting yn̄ = yc which yields

n̄ ∼ 1

p
ln

(
pyc

|q|
)

, (2.9)

This expression is valid for pyc >> q, which corresponds to the case p >> q(σ−1)/σ

and yc ∼ (p/|a|)1/(σ−1). To estimate the average interburst time τ we note that,

in order to initiate a burst, an orbit must come within ε of x = 0 where ε is

sufficiently small that the orbit remains near x = 0 for at least n̄ iterates. Since

the invariant density generated by (2.3) is uniform in x, we have that the average

time τ between bursts is given by τ−1 = ε. We express ε in terms of n̄ as follows.
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For small initial x0 near x = 0, the subsequent iterates grow exponentially as

x0 exp(h||n) where h|| = ln 2 is the Lyapunov exponent of (2.1a). Requiring that

ε exp(h||n̄) � δ, where δ < 1 is O(1), we obtain the desired estimate of ε and

hence of the average interburst time in terms of n̄

ln τ ∼ ln ε−1 = h||n̄. (2.10)

Substituting n̄ from (2.9) into (2.10) we obtain the result for the scaling of ln τ :

ln τ ∼ h||
p

ln

(
pyc

|q|
)

. (2.11)

This result is recorded in Table 1 with the appropriate value of yc substituted.

2.3.3 Average interburst time - noise

We now derive the scaling for the average interburst time in the presence of small

bounded noise in the map (2.2). We isolate the effect of noise by taking q = 0.

We consider the y dynamics in this case to be a drift-diffusion problem with

drift proportional to terms linear in y, i.e. py, and diffusion due to noise rνn.

We split the problem into two parts: first we consider drift-dominated bubbling

corresponding to the case where the effect of the py drift is dominant in developing

a burst, and then we consider noise-dominated bursting corresponding to the case

where the effect of the noise term rνn is dominant. For both cases we will derive

asymptotic upper bounds on the mean interburst time, and our final result for

the interburst time will be the minimum of these two bounds. We also derive a

relation between p and r that determines what kind of bursting is dominant and

thus which scaling applies.

First we consider noise-dominated bursting. In this case Eq. (2.2b) with

x = 0 can be approximated as a random walk process with small drift. We
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characterize this process with two quantities: the drift per iterate pyn and the

diffusion coefficient D = (1/2)r2V ar(ν). Here V ar(ν) is the variance of the

random variable νn (mean value of νn
2). For our numerical experiments νn is

uniformly distributed in [−1, 1], in which case V ar(ν) = 1/3.

As in the previous section, we assume that there is a critical value yc such

that we can estimate the time to produce a burst as the time for |y| to reach

yc in the absence of the nonlinear term ayσ. We set yc such that the size of the

nonlinear term is equal to the typical size of the noise, |a|yσ
c ∼ √

D. Hence we

have

yc ∼
∣∣∣∣∣
√

D

a

∣∣∣∣∣
1/σ

. (2.12)

By defining yc in this manner, we ensure that the nonlinear term dominates

the noise for |y| >> yc. However, it is possible that the nonlinear term becomes

significant for |y| << yc because it behaves coherently from one iterate to the

next while the noise term may not. Thus by ignoring the nonlinear term for

|y| < yc we may be overestimating the interburst time. However, our estimate

remains an upper bound on the interburst time, and our simulations show that

this upper bound correctly describes the actual interburst time scaling in the

noise-dominated case. The reason for this is that a burst most often occurs when

the noise does behave coherently; we discuss this point further in Section 2.6.

The average interburst time τ is the inverse of the probability per unit time of

initiating a burst. By initiating a burst, we mean that x maps close to 0 (having

not been close on the previous iteration), and that a burst will happen during

the time x remains close to 0. in the previous section, we could say exactly how

many iterations (n̄) x needed to remain close to 0 in order for a burst to occur,

but in the noise-dominated case we cannot. Instead, we proceed as follows. Let
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Q(n) be the probability that |y| has remained in the range |y| < yc up to time n.

The probability that |y| exceeds yc for some time at or before time n is 1−Q(n).

As in the previous section, probability that x will map close enough to 0 to stay

there for at least n iterations is proportional to e−h||n. Thus the probability that

x remains close to zero for exactly n iterations is proportional to e−h||n−e−h||(n+1).

Hence 1/τ , the probability per unit time of initiating a burst, satisfies

1

τ
�

∞∑
n=0

[
(e−h||n − e−h||(n+1))[1 − Q(n)]

]
(2.13)

To estimate (2.13) we utilize a continuous time approximation for the y dynamics,

with the continuous variable t replacing n. Equation (2.13) becomes

1

τ
� h||

∫ ∞

0

e−h||t[1 − Q(t)]dt = 1 − h||

∫ ∞

0

e−h||tQ(t)dt. (2.14)

The continuous time approximation of (2.13) requires that h|| be small. We note,

however, that (2.14) is valid as an order of magnitude estimate even when h|| is

of order one. Since τ >> 1, and since we will use (2.14) only to estimate the

logarithm of τ , an order of magnitude estimate is sufficient. To estimate Q(t), we

consider the time evolution of the probability distribution function for y, P (y, t)

for the situation in which an orbit starts at y = 0 at time t = 0 and is considered

to burst when |y| exceeds yc. Accordingly, we assume that P (y, 0) = δ(y) and

that P (y, t) = 0 for |y| ≥ yc, so that P (y, t) for |y| < yc represent the probability

distribution function for trajectories that have not yet reached |y| = yc at time

t. Thus

Q(t) =

∫ yc

−yc

P (y, t)dy, (2.15)

and

ln τ ∼ − ln

{
1 − h||

∫ yc

−yc

∫ ∞

0

e−h||tP (y, t)dtdy

}
. (2.16)
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We obtain the probability distribution function P (y, t) using the Fokker-Planck

diffusion approximation. Ignoring the nonlinear terms ayσ, the evolution of the

probability distribution function P (y, t) is given by the solution of the following

drift-diffusion equation:

D
∂2P

∂y2
=

∂P

∂t
+

∂

∂y
(pyP ), (2.17)

where py and D are the above mentioned drift velocity and average diffusion

per iterate parameters. Recall that the initial condition is P (y, 0) = δ(y) and the

boundary conditions are P (±yc, t) = 0. We solve this equation by first performing

a Laplace transform with respect to the time variable t

P̄ (y, s) =

∫ ∞

0

e−stP (y, t)dt. (2.18)

Note that this integral is the same as the integration over dt on the right hand

side of (2.16) with s replaced by h||. Thus

ln τ ∼ − ln

{
1 − h||

∫ yc

−yc

P̄ (y, h||)dy

}
. (2.19)

The differential equation for P̄ (y, s) is:

D
∂2P̄

∂y2
− py

∂P̄

∂y
− (p + s)P̄ = −δ(y), (2.20)

with boundary conditions P̄ (±yc, s) = 0. The exact solution of this equation

satisfying the boundary conditions can be expressed in terms of parabolic cylinder

functions (Abramowitz and Stegun 1965), and is rather cumbersome. For small p

we have developed a perturbation expansion approach that gives the lowest order

in p behavior. We first find the solution to (2.20) for p = 0 and call it P̄0(y, s).

Then we represent P̄ (y, s) in the form P̄ (y, s) = P̄0(y, s) + pP̄1(y, s) + O(p2) and

substitute this form into Eq.(2.20) and solve for P̄1(y, s) subject to P̄1(±yc, s) = 0.
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Thus we obtain the first order in p correction to the solution (see Appendix).

Writing τ in terms of P̄ (y, s) we obtain:

ln τ ∼ − ln

{
1 − h||

∫ yc

−yc

[P̄0(y, h||) + pP̄1(y, h||)]dy

}
+ O(1). (2.21)

Performing the integral above, and making the appropriate approximations (see

Appendix), we obtain the scaling of ln τ with p and D:

ln τ ∼
√

h||
D

yc − py2
c

4D
. (2.22)

This scaling is valid as long as the second term is small compared to the first one;

that is, when pσ/(σ−1)/|r| << 1. Upon substitution of the expression (2.12) for

yc into (2.22), we obtain our final expression for the scaling of ln τ :

ln τ ∼
√

h||
D

∣∣∣∣∣
√

D

a

∣∣∣∣∣
1/σ

− p

4D

∣∣∣∣∣
√

D

a

∣∣∣∣∣
2/σ

. (2.23)

This equation is also given in Table 1.

To numerically test the scaling results, we iterated map (2.2) starting at y = 0

and a typical (irrational) value of x with νn distributed uniformly on [−1, 1], and

measured the average interburst time for different values of the parameters p and

r. Figure 2.1 compares the derived scaling (solid line) with the results from the

numerical experiment (diamonds), where p = 0 and r is varied. In Figure 2.2, we

vary p keeping r fixed.

We now consider drift-dominated bursting. In this case, we again claim that

a burst occurs when y becomes greater than a critical value yc beyond which the

nonlinear term dominates. As an upper bound for the critical value yc we use

the same value for the burst threshold as we used in the case of mismatch, i.e.

yc = (p/|a|)(σ−1)−1
. If y ∼ yc the nonlinear term either confines the orbit (for

σ = 3 and a < 0), or else rapidly accelerates the orbit to y ∼ O(1). Similar to
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Figure 2.1: This plot shows ln τ vs. D−1/3 for bubbling induced by a pitchfork

bifurcation with noise in noise-dominated case, p << r2/3 << 1. D is the diffusion

coefficient, D = (1/2)r2V ar(ν). Parameter values are a = 1, p = 0, σ = 3, and

r = 0.1...0.2. The experimental data are plotted as diamonds. The solid curve

has the slope
√

h|| =
√

ln 2 predicted by scaling given in Table 1.
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Figure 2.2: This plot shows ln τ vs. p for bubbling induced by pitchfork bifurca-

tion with noise in the noise-dominated case, p << r2/3 << 1. Parameter values

are a = 2, r = 0.08 and σ = 3. The experimental data are plotted as diamonds.

The solid curve has slope −15.1 predicted by scaling given in Table 1.
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the mismatch case we first estimate the average number of iterates required for y

to reach yc starting at a value y0 = 0, ignoring the nonlinear term and assuming

that x stays at 0 (unlike for noise-dominated bursting, the number of iterates

does not depend strongly on whether the noise behaves coherently). The n-th

iterate then can be written as:

yn = r

n−1∑
i=0

(1 + p)iνi. (2.24)

Since νi are random variables with mean zero, we deduce that

V ar(yn) =
2[(1 + p)2n − 1]

p(2 + p)
D,

where D = (1/2)r2V ar(ν) is the previously defined average diffusion per iterate.

For p << 1, we can simplify the expression for the variance V ar(yn) � D
p
[(1 +

p)2n−1]. Now we set the burst condition to V ar(yn̄) = y2
c , where n̄ is the average

number of iterates of the map required on average for yn to become equal to or

greater than yc,

D

p
[(1 + p)2n̄ − 1] � y2

c . (2.25)

Solving the above equation for n̄, and dropping higher order p and d terms, we

obtain:

n̄ � 1

2p
ln

(
py2

c

D

)
. (2.26)

Notice that if the noise behaved coherently (say νn = 1 for all n), the result for

n̄ would differ only in that p would be replaced by p2 inside the logarithm [one

can see this by replacing |q| with r in (2.9)]. Using ln τ ∼ h||n̄, we obtain:

ln τ ∼ h||
2p

ln

(
py2

c

D

)
. (2.27)

This is the final scaling result given in the Table 1.

24



We have numerically tested our theoretical result for drift-dominated bubbling

by iterating the map (2.2) starting at y = 0 and a typical (irrational) value of

x with νn distributed uniformly on [−1, 1], and measuring the average interburst

time. The parameter p was varied with the other parameter values set at a = 2,

σ = 3 and r = 0.005. In Figure 2.3 we plot ln τ from the numerical experiments

vs. n̄(p) given by Eq. (2.26). The results of the numerical experiments are shown

as diamonds. The solid curve has a slope of h|| = ln 2 predicted by the scaling

given in Table 1.

Now we consider the condition on p and r that determines what kind of

bursting prevails, and hence which scaling applies. To do that, we set the two

relations, Eq. (2.23) and Eq. (2.27) equal in the lowest significant order:

√
h||
D

∣∣∣∣∣
√

D

a

∣∣∣∣∣
1/σ

� h||
p

. (2.28)

We arrive at the conclusion that the two scalings agree when pσ/(σ−1)/|r| � O(1).

Thus noise-dominated bubbling prevails when pσ/(σ−1)/|r| << 1 and the drift-

dominated bubbling prevails if pσ/(σ−1)/|r| >> 1. This result is consistent with

the order-of-magnitude estimate presented in Section 2.6.

2.4 Period doubling bifurcation

2.4.1 Maximum burst amplitude and stability

In this section we present a derivation of theoretical results and results of numer-

ical experiments for the period doubling bifurcation induced bubbling transition.

We start with the case of no noise: r = 0 in our model system (2.3). Consider
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Figure 2.3: This plot shows ln τ vs. n̄(p), where n̄(p) is given by (2.26), for

bubbling induced by a pitchfork bifurcation with noise in the drift-dominated

case, r2/3 << p << 1. Parameter values are a = 2, σ = 3, and r = 0.005.

The experimental data are plotted as diamonds. The solid curve has slope ln 2

predicted by scaling given in Table 1.
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Table 2.1: Summary of results for the pitchfork and transcritical bifurcations

using the model system (2.2), with D = (1/2)r2V ar(ν).

Symmetric coupling Asymmetric coupling

(σ = 3) (σ = 2)

Condition for hard transition a > 0 qa > 0 or r �= 0

Condition for soft transition a < 0 qa < 0 and r = 0

Maximum burst amplitude (soft transition) ∆ �
(

p
|a|
)1/2

∆ � p
|a|

for max(|q|, |r|)2/3 << p << 1 for q1/2 << p << 1

Average interburst time (mismatch) ln τ ∼ h||
p

ln( p3/2

|a|1/2|q|
) ln τ ∼ h||

p
ln( p2

|aq| )

for |q|2/3 << p << 1 for |q|1/2 << p << 1

Average interburst time (noise) ln τ ∼ h||
2p

ln

(
p2

|a|D

)
ln τ ∼ h||

2p
ln

(
p3

a2D

)
for r2/3 << p << 1 for r1/2 << p << 1

ln τ ∼
√

h||
3√

aD
− p

4(aD)2/3 ln τ ∼
√

h||√
a
√

D
− p

4aD1/2

for p << r2/3 << 1 for p << r1/2 << 1

an orbit starting at (x, y) = (0, 0) for the map (2.2). Note that (0, 0) is a fixed

point of the map for q = 0. The subsequent iterates obey the relation:

yn+2−yn = 2(p−aq)yn−2(a2 +b)y3
n− (p−aq)q+O(py2, p2y, q2y, qy2, q3, y4, pqy).

(2.29)

Making the change of variables p̂ = p − aq, we have

yn+2 − yn = 2p̂yn − 2(a2 + b)y3
n − p̂q + O(p̂y2, p̂2y, q2y, q3, qy2, y4, p̂qy). (2.30)

Of course, if p >> |aq|, then p̂ � p, but for smaller values of p the distinction

between p̂ and p will be significant. We proceed by analyzing (2.29) in the same

way we treated (2.5). Setting yn+2 − yn = 0, we obtain the equation for the

maximum burst amplitude ∆:

2p̂∆ − 2(a2 + b)∆3 − p̂q = 0. (2.31)

Similar to the derivation of (2.7) in the case σ = 3, we conclude that for a2+b > 0,

∆ � max

{(
p̂

a2 + b

)1/2

,

(
p̂|q|

a2 + b

)1/3
}

. (2.32)
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In particular, if |q|2 << p̂ << 1, then p̂1/2 >> (p̂|q|)1/3 and we have

∆ �
√

p̂

a2 + b
. (2.33)

(A result that accounts for the effect of mismatch more accurately can be obtained

by solving Eq. (2.31) for ∆ and taking the appropriate root.) Thus for x = 0

and a2 + b > 0, the linear exponential increase of y (namely yn+2 − yn � 2p̂yn)

is eventually arrested by nonlinearity, and y reaches a maximum, y = ∆, that is

small, O(p̂1/2), for small p̂, corresponding to a soft transition. For a2 + b < 0,

∆ does not exist, and, when |y| ∼ |p̂/(a2 + b)|1/2 the nonlinearity accelerates the

growth of y, leading to a hard transition.

We now obtain the conditions on the parameters that will determine whether

the transition is soft or hard. The type of transition is determined by the sign of

the expression under the square root in the denominator of (2.33), positive cor-

responding to a soft transition, and negative corresponding to a hard transition.

Thus we have that the transition is hard if a2 + b < 0 and soft if a2 + b > 0. We

have tested the above results in numerical experiments on Eqs. (2.3). For b = −4

the transition is hard if −2 < a < 2. Figure 2.4a illustrates the soft transition

if we iterate (2.3) starting at (x0, y0) = (0, 0). The data from numerical exper-

iments is plotted as dots. Figure 2.4b shows a bussting time series for a hard

bubbling transition.

In the case of noise, we have a soft transition if (a2 + b) > 0 and a hard

transition if (a2 + b) < 0. In the case of a soft transition, by arguments similar

to the one above, we have ∆ �
√

p̂
a2+b

when r2/3 << p << 1.
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Figure 2.4: Plot (a) shows the maximum burst amplitude ∆ vs. p for the soft

transition in period-doubling induced bubbling, map (2.3). The experimental

data are plotted as dots. The solid curve is the theoretical result from Eq. (2.33).

Plot (b) shows the bursting time series for hard transition at p = 0.27. Parameter

values are q = 0.003, a = −1.9 (a), a = −2.3 (b) and b = −4.
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2.4.2 Average interburst time - mismatch

To begin the analysis, we first note from (2.3) that the average magnitude of y

between bursts is of order q. We again consider the second iterate of the map

(2.3b), for x = 0 with terms of higher order in p and q dropped, resulting in

(2.29).

Eqn. (2.30) shows that in the case of a soft transition the nonlinearity limits

the increase of |y| at the value of
√

p̂
|a2+b| . Denote this value of y a critical value yc.

In the case of a hard transition, the nonlinear terms quickly push y to |y| ∼ O(1)

as soon as |y| grows to a value of the order yc. As mentioned earlier, at the

beginning of a burst y is of order q. The term p̂q only determines the direction

of the burst and therefore it is rather insignificant, being at most the order of

the 2p̂y term. Thus for simplicity we ignore it and assume that, when x comes

close to zero, y � q. Then yn
∼= (1 + 2p̂)n/2q and setting yn̄ = yc we obtain the

following expression for the number of iterates n̄ required for |y| to reach yc (i.e.,

to initiate a burst):

n̄ � 1

p̂
ln

(
yc

|q|
)

, (2.34)

for |q|2 << p̂ << 1. From (2.9) and (2.34), we obtain the desired estimate for

the average interburst time:

ln τ ∼ h||n̄ =
h||
p̂

ln

(
yc

|q|
)

, (2.35)

which is also given in Table 2.

We have obtained the scaling of τ with p numerically by starting the map (2.3)

at a random initial x and y = 0 and measuring the average number of iterates

that it took for |y| to become greater than 1. For the parameters of Figure 2.5

the transition is hard since a2 + b < 0. The experimental data is plotted as
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diamonds. Figure 2.5 presents this data as ln τ vs. n̄(p) where n̄(p) is obtained

from Eq. (2.34). The solid line has the slope of h|| = ln 2 predicted by (2.35) and

is consistent with the data.

2.4.3 Average interburst time - noise

In this section we deduce the expression for average interburst time for period

doubling induced bubbling. Similar to the previous section we consider every

other iterate of (2.3b) in the presence of noise and the absence of mismatch

(q = 0) with x at its fixed point x = 0:

yn+2 − yn � 2pyn − 2(a2 + b)y3
n + r(νn+1 − νn) (2.36)

We redefine the noise variable (νn+1−νn) as ν̂n, where V ar(ν̂n) = 2V ar(νn). With

ν̂n, Eqn.(2.36) is equivalent to the case of noise in pitchfork bifurcation (σ = 3).

The variance of ν̂n is double the variance of νn, but since we are considering every

other iterate of yn, these two effects cancel in the computation of the average

interburst time. Thus all results derived in Section 2.3.3 apply, including the

scaling ranges, if we use the derived expressions for average interburst time for

σ = 3 with a2 + b as the coefficient of the cubic term. The results for period-

doubling bifurcation induced bubbling are summarized in Table 2.

To test the scaling results we iterated map (2.3) starting at a typical irrational

x and y = 0 with νn distributed uniformly on [−1, 1] and measured the average

interburst time for different values of p, keeping the noise magnitude r fixed.

Figure 2.6 compares the derived scaling result with the experimental results. We

plot ln τ for different values of p keeping other parameters fixed. Numerical data

is plotted as diamonds.
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Figure 2.5: This plot shows ln τ vs. n̄(p), where n̄(p) is given by (2.34), for

bubbling induced by a period doubling bifurcation with asymmetry for q2 <<

p << 1. Parameter values are a = 1, b = −2, q = 0.008 with p varying from 0.14

to 0.22. The experimental data are plotted as diamonds. The solid curve has a

slope of ln 2 predicted by scaling given in Table 2.
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Figure 2.6: This plot shows ln τ vs. p for bubbling induced by a period doubling

bifurcation with noise in the noise-dominated case, p << r2/3 << 1. Parameter

values are a = 1, b = −4 and r = 0.08. The experimental data are plotted

as diamonds. The solid curve has the slope −11.5 predicted by scaling given in

Table 2.

33



Table 2.2: Summary of results for the period doubling bifurcation using the model

system (2.3). We use the notation p̂ = p − aq and D = (1/2)r2V ar(ν).

Condition for hard transition a2 + b < 0

Condition for soft transition a2 + b > 0

Maximum burst amplitude (soft transition) ∆ �
√

p̂
a2+b

for max(|q|2, r2/3) << p̂ << 1

Average interburst time (mismatch) ln τ ∼ h||
2p̂ ln

(
p̂

|a2+b|q2

)
for |q|2 << p̂ << 1

Average interburst time (noise) ln τ ∼ h||
2p ln

(
p2

|a2+b|D
)

for r2/3 << p << 1

ln τ ∼
√

h||
3
√

(a2+b)D
− p

4((a2+b)D)2/3

for p << r2/3 << 1
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2.5 Hopf bifurcation

2.5.1 Maximum burst amplitude and stability

Next we examine the case of a Hopf bifurcation, Eqs. (2.4). We consider an

orbit starting at (x, z) = (0, 0 + 0i), and take p = 0 (i. e., we consider the

map at the critical bifurcation point). For the validity of the analysis below

we assume that the angle θ in the exponent in front of the linear coefficient is

not equal to certain special values: 0,±π/2,±2π/5,±2π/3 and ±π. The cases

θ = 0 and θ = ±π correspond to pitchfork or transcritical and period doubling

bifurcations and have already been considered in Sections 2.3 and 2.4. The other

non-allowed angles (±π/2,±2π/5,±2π/3) correspond to non-generic cases which,

unless special circumstances apply, are not expected to occur. When the above

special θ values are excluded, it can be shown (Wan 1978; Lanford 1973) that by

means of a coordinate transformation of the form

z′n = zn + γ1z
2
n + γ2znz∗n + γ3(z

∗
n)2, (2.37)

where γ1, γ2 and γ3 are complex numbers, all quadratic terms can be eliminated

from (2.4c) with x = 0, yielding

z′n+1 = λz′n + d′|z′n|2z′n + q + rνn + O(q2, r2, rz′, qz′, pz′2, z′4), (2.38)

where λ = (1 + p)eiθ and

d′ =
1 − 2λ

λ(λ − 1)
ab +

λ

λ − 1
bb∗ +

2λ

λ3 − 1
cc∗ + d. (2.39)

Defining z̃ = z′ + q/(1 − λ), and substituting into (2.38) cancels q in lowest

significant order. Thus, in terms of z̃, Eq. (2.38) becomes:

z̃n+1 = λz̃n + d′|z̃n|2z̃n + rνn + O(q2, r2, rz̃, qz̃, pz̃2, z̃4). (2.40)
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Until we consider noise in Section 2.5.3, we assume that r = 0. Then (2.40)

can be transformed into the following canonical form:

( |z̃n+1|
arg(z̃n+1)

)
=

(
(1 + p)|z̃n| − f1|z̃n|3
arg(z̃n) + Θ + f2|z̃n|2

)
+ O(q2, qz̃, z̃4

n) (2.41)

with f1, Θ, and f2 being real coefficients. Equation (2.41) shows that the critical

issue is the sign of f1. A positive sign indicates a soft transition and a negative

sign indicates a hard transition. As derived in (Wan 1978), f1 = −Re(λ∗d′) at

the bifurcation value λ = eiθ, or

f1 = Re

[
(1 − 2eiθ)e−2iθ

1 − eiθ
ab

]
+

1

2
bb∗ + cc∗ − Re(de−iθ) (2.42)

The sign of the above expression determines whether the transition is hard (f1 <

0) or soft (f1 > 0).

Next we obtain an expression for the maximum burst amplitude for a soft

transition in model (2.4). We assume that f1 is of order 1, i.e., we are not close

to the borderline between hard and soft transitions. Rewriting the radial part of

(2.41) as

|z̃n+1| − |z̃n| = p|z̃n| − f1|z̃n|3 + O(q2, qz̃, z̃4
n), (2.43)

we see that, similar to the pitchfork case, the maximum burst amplitude ∆̃ for

|z̃| is

∆̃ �
√

p

f1
. (2.44)

This relation is true if p∆ = f1∆
3 >> max(q2, q∆̃, ∆̃4

n). Thus the scaling range

for (2.44) is |q| << p << 1, and, since z = z′+O(z′)2 = z̃+O(z̃2, q), in this range

we have ∆ � ∆̃ �
√

p
f1

. Since our final result does not depend on the magnitude

of q in the scaling range specified, the result applies in the case of noise-induced

bubbling as well. Figure 2.7 shows the scaling of the maximum burst amplitude
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with p. Experimental data are plotted as dots. The solid curve is calculated from

(2.44).

In the case of noise, we have a soft transition if f1 > 0 and a hard transition

if f1 < 0. In the case of a soft transition, by arguments similar to the ones in

previous sections, we have ∆ �
√

p
f1

when r2/3 << p << 1.

2.5.2 Average interburst time - mismatch

We now derive an expression for the average interburst time in the presence of

mismatch (q > 0) and no noise (r = 0). Again we consider an orbit starting at

(x, z) = (0, 0+0i) and use the new coordinates z′ to eliminate the quadratic terms.

Note that the coefficient in front of the cubic term in the transformed coordinates

is given by (2.39). As in the previous derivations (Sections 2.3 and 2.4), we make

use of the fact that, in the case of a hard transition, when |zn| grows to the

point where the nonlinear terms become significant, the nonlinearity pushes |zn|
to O(1) rapidly. Consider the linear terms in map (2.38), zn+1 = λzn + q +O(z3

n).

We first find the number of iterates it takes to escape starting at 0. Starting at

z = 0, the n-th iterate of the linearized map is zn = 1−λn+1

1−λ
q. The nonlinear term

becomes significant when after n̄ iterates, |z| reaches the critical value zc =
√

p
|f1| ,

thus we have the equation for n̄:∣∣∣∣1 − λn̄+1

1 − λ
q

∣∣∣∣
2

� p

|f1| .
(2.45)

Solving the above equation, we find n̄:

n̄ � 1

2p
ln

∣∣∣∣p(1 − λ)2

|f1||q|2
∣∣∣∣ . (2.46)

Knowing the number of iterates n̄ it takes to escape assuming xn stays close to

the fixed point, we use (2.35), ln τ ∼ h||n, to derive the scaling with p of the
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Figure 2.7: This plot shows the maximum burst amplitude ∆ vs. p for a soft tran-

sition in Hopf bifurcation - induced bubbling. The experimental data are plotted

as dots. The solid curve is the theoretical result from Eq. (2.44). Parameter

values are a = 0.1, b = 0, c = 0.1, d = 1.0, θ = π
√

5, and q = 0.0001 − 0.0001i.
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average interburst time τ ,

ln τ ∼ h||n̄ � h||
2p

ln

∣∣∣∣p(1 − λ)2

|f1||q|2
∣∣∣∣ . (2.47)

Finally, using the approximation λ = (1 + p)eiθ � eiθ, we obtain the final scaling

given in Table 3:

ln τ ∼ h||n̄ � h||
2p

ln

∣∣∣∣p(1 − eiθ)2

|f1||q|2
∣∣∣∣ . (2.48)

We numerically iterated the map (2.4) starting at a typical irrational x and

z = 0 + 0i and measured the interburst time. Figure 2.8 shows the result of

numerical experiments (diamonds); ln τ is plotted vs. n̄(p), where n̄(p) is given

in terms of p by (2.48). The solid line has the predicted slope h|| = ln 2 and is

consistent with the data.

2.5.3 Average interburst time - noise

We now consider the case where bubbling is induced by noise, i.e. r > 0, but

q = 0. According to (2.41), for small p and in the presence of noise, the evolution

of the radial part of zn with x = 0 is the same as the evolution of y in the pitchfork

case with cubic nonlinearity with −f1 as the cubic coefficient:

|z̃n+1| � (1 + p)|z̃n| − f1|z̃n|3 + r{νn}z. (2.49)

The noise term r{νn}z is the projection of noise on the direction of zn in the

complex plane. Since the noise is distributed uniformly within the unit circle,

{νn}z has a one-dimensional probability distribution on [−1, 1] with pdf given by

2
√

1 − {ν}z
2. This distribution has variance of 1/4. We can analyze (2.49) in

the same way as in the Section 2.3.3, but with D = (1/2)r2V ar({νn}z). The θ

dependence disappears from the final scaling due to the fact that the distribution

of noise is uniform within the unit circle.
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Figure 2.8: This plot shows ln τ vs. n̄(p), where n̄(p) is given by (2.46), for

bubbling induced by a Hopf bifurcation with asymmetry for |q| << p << 1.

Parameter values are a = 1, b = 1,c = 1, d = 2, p = 0.1, ..., 0.15, θ = π
√

5, and

q = 0.015. The experimental data are plotted as diamonds. The solid curve has

slope ln 2 predicted by (2.48).
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Table 2.3: Summary of results for the Hopf bifurcation (f1 is defined in (2.42),

and D = (1/2)r2V ar(ν)).

Condition for hard transition f1 < 0

Condition for soft transition f1 > 0

Maximum burst amplitude (soft transition) ∆ �
√

p
f1

for max(|q|, r2/3) << p << 1

Average interburst time (mismatch) ln τ ∼ h||
2p ln

∣∣∣p(1−eiθ)2

|f1||q|2
∣∣∣

for |q| << p << 1

Average interburst time (noise) ln τ ∼ h||
2p ln

(
p2

|f1|D
)

for r2/3 << p << 1

ln τ ∼
√

h||
3
√

f1D
− p

4(f1D)2/3

for p << r2/3 << 1

Our final results for Hopf bifurcation induced bubbling transitions are sum-

marized in Table 3.

2.6 Further Discussion of the Noise-Induced Bub-

bling Mechanism

In this section we provide more insight on the nature of two types of noise-induced

bubbling: noise-dominated and drift-dominated. Consider again the map (2.2).

We define a critical value yc such that for y > yc the nonlinear terms become
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dominant and the burst quickly follows. A burst occurs when x comes close to the

fixed point x = 0 and stays there for a large number of iterates n̄. The probability

per iterate of that event is of order exp(−h||n̄). After x has entered the required

vicinity of the fixed point, the linear coefficient cos(2πx)+p � 1+p immediately

starts driving y away from the invariant manifold. At the time x enters the region

near x = 0, y will typically be of the order of the size of the noise, y ∼ r. Thus a

burst will occur if yc ∼ r exp(n̄p), or n̄ ∼ p−1 ln(yc/r) ∼ p−1. We call this scenario

drift-dominated bubbling. The probability per iterate of initiating a burst by this

mechanism is of order exp(−h||/p) and goes to zero exponentially as p comes close

to the critical value p = 0. This would imply that bursts do not happen when

p = 0, but the experimental results suggest otherwise. Thus we consider another

possible route for a burst that becomes important when p sufficiently small. We

call this second mechanism noise-dominated bubbling. In the noise-dominated

case p is close enough to zero that it can be ignored. In that case a burst may

occur if x comes close to the fixed point x = 0 and stays there for n̄ iterates

where n̄ is in the range yc/r � n̄ � (yc/r)
2. With p neglected, the probability

of reaching yc in n̄ iterates is of order exp
[
−
(

y2
c

n̄r2

)]
. This the probability of

a burst in this case is of order exp
[
−
(

y2
c

n̄r2

)]
exp(−n̄h||), which is maximized

when n̄ ∼ yc/r. This suggests that when such a burst occurs, the noise behaves

coherently over n̄ iterates pushing y on average in the same direction away from

the invariant manifold. Since we determined yc for a coherent perturbation to

be proportional to r1/σ (see Eq. (2.12)), the probability of the burst becomes of

order exp(−h||r(1−σ)/σ). Thus the average interburst time τ is of order

τ ∼ min(exp(h||r(1−σ)/σ), exp(h||/p)). (2.50)
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Eqn.(2.50) suggests that the noise-induced bursting mechanism prevails if

pσ/(σ−1)/|r| << 1, while the drift-induced bursting mechanism prevails if

pσ/(σ−1)/|r| >> 1.

2.7 Conclusion

The above discussions have assumed that there is no attractor away from the

invariant manifold. In the situation where there is an attractor away from the

invariant manifold, our analytical results derived in Sections 2.3-2.5 still apply,

but the meaning of τ is different. Specifically, for the case that we previously

referred to as a hard transition, q, r = 0 now yields a riddled basin attractor

on the invariant manifold Aswin et al 1994;Ott et al. 1993; Sommerer and Ott

1993; Lai et al. 1996). For q, r �= 0 this attractor is destroyed and converted to

a chaotic transient whose mean lifetime is given by τ (Tables 2.1-2.3).

To summarize, in this paper we have presented an unified treatment of the

bubbling transitions involving all generic types of bifurcations: pitchfork or tran-

scritical, period doubling and Hopf. The novelty of this paper is in the theoretical

derivation of results for scalings of the average interburst time and the maximum

burst amplitude with the normal parameter as well as conditions for hard and

soft bubbling transitions in the above three cases for both noise and mismatch

induced bubbling.
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and the W.M. Keck Foundation. Our interest in this problem was originally

motivated by interesting discussions with D. Gauthier concerning his experiments

on coupled chaotic oscillators.
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Appendix

In this Appendix we provide details on the solution of Eq.(2.20) subject to the

boundary conditions P̄ (±yc, s) = 0. We look for an approximate solution in

terms of a perturbation expansion P̄ (y, s) = P̄0(y, s) + pP̄1(y, s) + O(p2). First,

we set p = 0 in Eq. (2.20) to obtain equation for P̄0(y, s):

D
∂2P̄0

∂y2
− sP̄0 = −δ(y), (2.51)

The solution of this equation satisfying the boundary conditions is:

P̄0(y, s) =
sinh
(

(yc−|y|)√s√
D

)
2
√

Ds cosh
(

yc
√

s√
D

) . (2.52)

Now since we know P̄0(y, s), we can deduce the equation for P̄1(y, s):

D
∂2P̄1

∂y2
− y

∂P̄0

∂y
− P̄0 − sP̄1 = 0. (2.53)

Solving the above equation subject to boundary conditions P̄1(±yc, s) = 0 and(
∂P̄1

∂y

)
y=0

= 0, we obtain the expression for P̄1(y, s):

P̄1(y, s) =

[
1 − s

D
|y|2 +

√
s
D

yc tanh
(√

s
D

yc

)]
sinh

(√
s
D

(|y| − yc)
)

+
√

s
D

(yc − |y|) cosh
(√

s
D

(|y| − yc)
)

8 cosh(
√

s/Dyc)
. (2.54)

Upon setting s = h|| and substitution of the expressions for P̄0(y, s) and P̄1(y, s)

into the (2.21) and integration over y we obtain

ln τ ∼ − ln




1 + py2
c

4D
− pyc

4
√

h||D
tanh

(√
h||yc√
D

)

cosh

(√
h||yc√
D

)

 . (2.55)

The quantity

√
h||yc√
D

in (2.55) is large which allows us to make the approximations

cosh

(√
h||yc√
D

)
� exp

[√
h||yc√
D

]
/2 and tanh

(√
h||yc√
D

)
� 1, and neglect the yc

4
√

h||D

term compared to y2
c

4D
to obtain the final scaling given in Eq. (2.22).

44



Chapter 3

Extracting Envelopes of Rossby Wave packets

1

3.1 Introduction

In this note we consider a situation in which we are given a spatially dependent

scalar atmospheric quantity v(x), and that there is a range of wavenumbers 0 <

kmin ≤ k ≤ kmax in which waves of physical interest are known to occur. Using

this information, we seek to extract from v(x) a suitable wave-like component of

the form,

w(x) = A(x) cos(φ(x)) (3.1)

where A(x), the envelope, is slowly varying in x as compared to the phase φ(x)

(see Figure 1 for an example). Often A(x) will be spatially localized, in which

case we refer to it as the wave packet envelope.

The desire to locate wave packets in observed atmospheric data is as old

1This chapter is a verbatim representation of the paper A. V. Zimin, I. Szunyogh, D.J.

Patil B. R. Hunt and E. Ott 2003: Extracting Envelopes of Rossby Wave Packets, Mon. Wea.

Rev.,131, 847-853.
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as the knowledge that Rossby waves play a key role in shaping the weather

in the mid-latitude extra-tropics (Rossby 1945,1949; Yeh 1949; Phillips 1990;

Persson 2000). The first technique that was used to detect the propagation of

synoptic scale Rossby waves (wavenumber 4-9) was the trough-ridge diagram

proposed by Hovmöller (1949). In a Hovmöller diagram a selected atmospheric

variable, usually the deviation from the mean of the meridional component of

the wind or the geopotential height, is averaged over a latitude band and plotted

as a time-longitude diagram. The signature of a propagating wave packet in the

Hovmöller diagram is a series of alternating positive and negative regions aligned

in a diagonal direction.

While the Hovmöller diagram is a powerful tool, it cannot detect the two-

dimensional horizontal structure of the wave packets. This can lead to obscure

results when wave packets coexist in close proximity at different latitudes. To

remedy this problem, recent papers on downstream wave packet propagation

(Lee and Held 1993; Chang and Yu 1999; Chang 2000) have utilized the method

of complex demodulation (for an in depth review see Bloomfield 2000). This

technique assumes that v(x) can be written as v(x) = Re(A(x) exp(ikx)), where

k is a supposed carrier wavenumber. Then the spectrum of v(x) is shifted by

multiplying v(x) by exp(−ikx). Finally, the absolute value of the wave packet

envelope |A(x)|, is extracted by low-pass filtering to remove high wave number

components from the shifted signal. The general wisdom has been that the

result is not sensitive to the choice of the carrier wavenumber when it is chosen

from a plausible wave number range. (For instance, for carrier wavenumber 7

the position and amplitude of the maximum of |A(x)| is usually identified with

acceptable precision, even if the demodulation is done by wavenumber 6 or 8.)
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While this assumption leads to reasonable results in most cases, demodulating

by the wrong wave number results in incorrect computation of the wave packet

envelope when wave packets of distinct carrier wavenumbers coexist at the same

latitude.

The aforementioned problem can be easily demonstrated by an example using

the following artificial signal that consists of two wave packets with carrier wave

numbers 4 and 9 at the same latitude (see Figure 3.1)

v(x) = exp(−(x − 4.5)2) cos(4x) + exp(−(x − 7.5)2) cos(9x), π ≤ x ≤ 3π. (3.2)

Figure 3.1 shows the resulting wave packet envelopes when the demodulation

is performed using carrier wavenumbers from 4 through 11. It is evident that

demodulating by a single wavenumber distorts the envelope of at least one of the

wave packets.

The main aim of this note is to introduce a robust technique for extracting

the envelope of atmospheric wave packets that is not affected by the aforemen-

tioned problem. The proposed technique does not require the specification of a

carrier wave number, is easy to implement, and is computationally inexpensive.

Although this technique is well known in digital signal processing (Gabor 1946,

Oppenheim and Schafer 1975, Laine and Fan 1996), to the best of our knowledge,

it has not previously been used for extracting the envelope of atmospheric wave

packets. In what follows, we give a step-by-step description of the algorithm

(Section 3.2) and demonstrate its skill using four examples (Section 3.3). These

examples include two analytical cases for which the packet envelope is known;

the tracking of an upper tropospheric wave packet in operational weather anal-

yses from the National Centers for Environmental Prediction (NCEP), and the

tracking of the impact of targeted dropsonde observations that were collected by
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Figure 3.1: An analytical example of a function, v(x), that consists of two wave

packets with carrier wave numbers 4 and 9, respectively. Thin line represents

v(x), while dashed lines show the result of demodulation by wavenumbers from

4 through 11. Thick solid lines represent the envelope recovered by our method.
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one of the flight missions during the 2000 Winter Storm Reconnaissance Program

(Szunyogh et al. 2002).

3.2 Description of the algorithm

In what follows, v(x) is considered on an equidistant grid along a latitude circle,

which is parameterized by x, with 0 < x ≤ 2π. The grid points are located at

x = 2πl/N , where l = 1, 2, ..., N , and N is an even integer.

The following algorithm is proposed to isolate the wave packet envelopes:

• Step 1. The Fourier Transform of the real function v(x) is computed:

v̂k =
1

N

N∑
l=1

v(2πl/N)e−2πikl/N , (k = −N/2 + 1, ..., N/2). (3.3)

• Step 2. The inverse Fourier transform is applied to a selected band (0 <

kmin ≤ k ≤ kmax) of the positive wavenumber half of the Fourier spectrum:

w(2πl/N) = 2
kmax∑

k=kmin

v̂ke
2πikl/N . (3.4)

• Step 3. The packet envelope is computed as follows:

A(2πl/N) = |w(2πl/N)|. (3.5)

This algorithm is a combination of the signal processing technique known as the

Hilbert Transform2, and a simple filter that retains only the relevant wavenumber

2The Hilbert Transform is used in signal processing to recover a complex-valued signal from

the real-valued signal by removing the negative wavenumber components from the spectrum of

the real signal. If Xr is the real signal, the complex signal can be written as X = Xr + iH(Xr),

where H(·) denotes Hilbert Transform.
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Figure 3.2: Two possible choices of the spectral filter function (see Section 3.2

for details).

components. Equation (3.4) also can be viewed as a wavelet transform in which

the wavelet is the inverse Fourier transform f(x) of the function f̂(k) shown in

Figure 3.2a, which is f(x) ∼ {sin(∆kx)/x} exp{−ik̄x}, where ∆k = (kmax −
kmin)/2 and k̄ = (kmax + kmin)/2. A smoother filter (wavelet) might be thought

to be more natural; e.g., f(x) ∼ {exp(∆kx)2/2}∆k exp{−ik̄x}, corresponding to

the k-space filter shown in Figure 3.2b. We also tested this smoother filter and

found that it leads to negligible difference in the results while making the method

more complicated.

3.3 Examples

Example 1: Let

v(x) = cos[(k − 1)x] + cos[kx] + cos[(k + 1)x], x ∈ [π, 3π]. (3.6)
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Applying steps 1 and 2 of our algorithm, we get w(x) = exp[i(k−1)x]+exp[ikx]+

exp[i(k +1)x], and the wave packet envelope for this example is A(x) = |w(x)| =

1 + 2 cos(x). Indeed, v(x) can be expressed in the following form:

v(x) = Re(w(x)) = Re[(1 + 2 cos(x)) exp(ikx)] = Re[A(x) exp(ikx)]. (3.7)

It can be easily verified that w(x) can be obtained numerically by applying the

Fourier transform to v(x), removing the negative wavenumber part of the spec-

trum, and then applying the inverse Fourier transform to the resulting spectrum.

The result for k = 7 is plotted in Figure 3.3.

Example 2: The proposed algorithm is applied to the analytical example,

Equation (3.2), that was used in Section 3.1 to demonstrate the shortcomings

of the complex demodulation technique. For this example we use kmin = 1 and

kmax = 12. Figure 3.1 shows clearly that, in contrast to complex demodulation,

the proposed algorithm accurately extracts the wave packet envelopes when wave

packets with different carrier wave numbers coexist at the same latitude.

Example 3: The proposed algorithm is applied to analyze a case from the

2000 Winter Storm Reconnaissance targeted observations field program (Szun-

yogh et al. 2002). In particular, we consider the wave packet that significantly

contributed to the deepening of a trough over the eastern United States on 25

and 26 January. The most significant failure of the numerical weather predic-

tion models in the 1999-2000 winter season was associated with the prediction

of the storm related to this trough (for details see Buizza et al. 2002; Langland

et al. 2002; Zhang et al. 2002). Our goal is to track the propagation of this

upper tropospheric wave packet. We restrict our analyses to the meridional wind

component at the 300 hPa pressure level on a global 2.5◦ by 2.5◦ resolution grid

(N = 144) with 24 hour temporal resolution. Since the goal is to track packets of
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Figure 3.3: An analytical example of a wavepacket (for details see Example 1).

Thin line represents the scalar function v(x) and thick line represents the envelope

A(x).
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short Rossby waves associated with baroclinic energy conversion, kmin and kmax

are chosen to be 4 and 9, respectively. Our wave packet analysis shows clearly

why this was a particularly difficult forecast situation. In Figure 3.4, the wave

packet can be clearly identified even as early as 21 January 2000 0000 UTC (WP

marks the location of the maximum of the packet envelope). At that time the

wave packet is located over Japan. Subsequently the hydrodynamical influence

in the upper troposphere (and the effect of analysis uncertainties) traveled with

the wave packet at an approximate speed of 30 degrees/day from the Pacific re-

gions. Once the wave packet reached the Atlantic, its envelope started to amplify

rapidly due to local baroclinic energy conversion.3 This result corroborates the

conclusions of Langland et al. (2002), obtained by adjoint sensitivity calcula-

tions, that initial condition uncertainties over the Pacific had an influence on the

quality of the 72-hour forecasts of the storm.

Example 4: Studies based on the analytical investigation of idealized atmo-

spheric flows predicted long ago, that an initially localized disturbance in the

initial condition of a synoptic scale numerical weather prediction would propa-

gate as a packet of synoptic scale Rossby waves (Rossby 1949, Charney 1949).

Targeted weather observations (e.g., Snyder 1996; Szunyogh et al. 1999; Palmer

et al. 1998; Gelaro et al. 1999; Bergot et al. 1999; Pu and Kalnay 1999) change

the initial conditions with the aim of removing localized initial condition errors

that have potentially large negative forecast effects. As pointed out by Szun-

yogh et al. (2000 and 2002) based on analysis of data from the 1999 and 2000

3Our results on the local energetics of the wave packets, are reported in Szunyogh et al.,

(2002). In that work, the envelope of the wave packet was extracted by the Multiple Wavenum-

ber Packet Identification (MWPI) technique (manuscript is available from the corresponding

author), which was an earlier version of the algorithm presented here.
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Figure 3.4: Time evolution of wave packet envelope A(x) of the meridional wind

velocity at 300 hPa for the eight-day period starting on 21 January 2000 0000

UTC. The values smaller than 20m/s are not shown. Contour lines show the

NCEP analysis for the geopotential height at the 300 hPa surface. WP marks

the center of the wave packet described in Example 3. The dropsonde locations

are shown by red crosses at 25 January 2000 0000 UTC and the verification region

is marked by a circle at 27 January 2000 0000 UTC (see Example 4 for details).
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Winter Storm Reconnaissance programs, upper tropospheric wave packets play a

twofold role in the targeted observation problem. Firstly, they build a dynamical

relationship between the targeted region and the verification region, where the

forecast is to be improved at a later time. This relationship can be detected by

an objective targeting technique, such as the Ensemble Transform Kalman Filter

(Bishop et al. 2001). Secondly, it can be expected that the local changes intro-

duced by the targeted data would propagate in the form of Rossby wave packets

in the upper troposphere, as it was predicted by the theory of Rossby (1949) and

Charney (1949).

While the results of Szunyogh et al.(2000 and 2002) strongly indicated that

the later statement is true even for complex atmospheric flow configurations, no

strong evidence was offered to show that the impact of the dropsondes propagates

in the form of synoptic scale Rossby wave packets. One way to demonstrate that

this view is correct is to show that the wave packet can be detected in the drop-

sonde signal. (This signal is defined by the difference between the NCEP global

model forecast that was initiated by assimilating all targeted and standard (non-

targeted) observations and the NCEP global model forecast that was initiated by

assimilating only the standard observations.)

In this example, the algorithm described in Section 3.2 is applied to the signal

from a dropsonde mission that was associated with the atmospheric wave packet

of Example 3. Targeted observations were collected on 25 January 2000 0000 UTC

to improve the prediction of a secondary development on 27 January 2000 0000

UTC over the east coast, and not the major storm itself on 25-26 January 2000

(see Szunyogh et al. 2002 for further details). Figure 3.4 shows that the dropsonde

observations targeted the tail of the observed atmospheric wave packet and that
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Figure 3.5: Time evolution of the envelope of the 300 hPa geopotential height

signal for the four-day period starting 25 January 2000 0000 UTC. The signal

is defined by the difference between a forecast that was initiated by assimilating

all targeted and standard (non-targeted) observations and a forecast that was

initiated by assimilating only the standard observations. The values smaller than

1.5 gpm are not shown. The dropsonde locations are shown by red crosses at 25

January 2000 0000 UTC and the verification region is marked by a circle at 27

January 2000 0000 UTC.
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the verification region was also located at the tail of the eastward propagating

wave packet at verification time. The results shown in Figure 3.5 demonstrate

that after an initial transient, not longer than 12 hours, the data impact in

the upper troposphere propagated in the form of a wave packet and the leading

edge of the eastward expanding data impact propagated with the speed of the

atmospheric wave packet.

3.4 Conclusion

In this note we have presented a robust objective method for extracting the

envelope of packets of synoptic scale Rossby waves. We believe that our method

provides a potentially useful tool in analyzing meteorological problems related

to the propagation of wave packets, such as studying local baroclinic instability

(Pierrehumbert and Swanson 1995; Orlanski and Sheldon 1993), tracking the

origin of localized forecast errors (Persson 2000), and analyzing the propagation

of the influence of targeted observations (Szunyogh et.al. 2002).
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Chapter 4

Local Ensemble Data Assimilation

1

4.1 Introduction

The purpose of this paper is to develop and test a new atmospheric data as-

similation scheme, which we call the Local Ensemble Kalman Filter method.

Atmospheric data assimilation (analysis) is the process through which an esti-

mate of the atmospheric state is obtained by using observed data and a dynamical

model of the atmosphere (e.g., Daley 1991; Kalnay 2002). These estimates, called

analyses, can then be used as initial conditions in operational numerical weather

predictions. In addition, diagnostic studies of atmospheric dynamics and climate

are also often based on analyses instead of raw observed data.

The analysis at a given time instant is a maximum likelihood estimate of the

atmospheric state in which a short-term forecast, usually referred to as the back-

ground or first guess field, is used as a prior estimate of the atmospheric state

1This chapter is a verbatim representation of the paper Local Ensemble Data Assimilation

by E. Ott et al. submitted to Monthly Weather Review.
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(Lorenc 1986). Then the observations are assimilated into the background field

by a statistical interpolation. This interpolation is performed based on the as-

sumptions (i) that the uncertainties in the background field and the observations

are normally distributed and (ii) that the covariance between different compo-

nents of the background (formally the the background covariance matrix ) and the

covariances between uncertainties in the noisy observations (formally the obser-

vational error covariance matrix ) are known. In reality, however, the background

error covariance matrix cannot be directly computed. The implementation of a

data assimilation system, therefore, requires the development of statistical mod-

els that can provide an estimate of the background error covariance matrix. The

quality of a data assimilation system is primarily determined by the accuracy of

this estimate.

The mathematically consistent technique to define an adaptive background

covariance matrix is the Kalman Filter (Kalman 1960; Kalman and Bucy 1961)

which utilizes the dynamical equations to evolve the most probable state and the

error covariance matrix in time. Although the Kalman Filter approach has been

successfully implemented for a wide range of applications and has been considered

for atmospheric data assimilation for a long while (Jones 1965; Petersen 1973;

Ghil et al. 1981, Dee et al., 1985), the computational cost involved does not allow

for an operational implementation in the foreseeable future (see Daley 1991 for

details).

The currently most popular approach to reduce the cost of the Kalman Filter

is to use a relatively small (10-100 member) ensemble of background forecasts to

estimate the background error covariances (e.g. Evensen 1994; Houtekamer and

Mitchell 1998, 2001; Bishop et al. 2001; Hamill et al. 2001; Whitaker and Hamill
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2002). In ensemble-based data assimilation schemes the ensemble of background

forecasts is generated by using initial conditions distributed according to the

result of the previous analysis.

The ensemble-based approach has the additional appeal of providing initial

ensemble perturbations that are consistent with the analysis scheme. This is

important because currently implemented operational techniques generate initial

ensemble perturbations without use of direct information about the analysis er-

rors (Toth and Kalnay 1997; Molteni et al. 1996). These techniques are obviously

suboptimal considering the goal of ensemble forecasting, which is to simulate the

effect of the analysis uncertainties on the ensuing forecasts.

The main difference between the existing ensemble-based schemes is in the

generation of the analysis ensemble. One family of schemes is based on perturbed

observations (Evensen and van Leeuwen 1996; Houtekamer and Mitchell 1998,

2001; Hamill and Snyder 2000, 2001). In this approach, the analysis ensemble

is obtained by assimilating a different set of observations to each member of the

background ensemble. The different sets of observations are created by adding

random noise to the real observations, where the random noise component is gen-

erated according to the observational error covariance matrix. The main weakness

of this approach is that the ensemble size must be large in order to accurately

represent the probability distribution of the background errors. Thus a relatively

large forecast ensemble has to be evolved in time, limiting the efficiency of the ap-

proach. The most recent papers demonstrated, however, that the required size of

the ensemble can be reduced by evolving two smaller ensembles and filtering the

long distance covariances from the background field (Houtekamer and Mitchell

1998 and 2001; Hamill et al. 2001).
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The other family of schemes, the Kalman square-root filters, use a different

approach to reduce the size of the ensemble. These techniques do the analysis

only once, to obtain the mean analysis. Then the analysis ensemble perturbations

(to the mean analysis) are generated by linearly transforming the background

ensemble perturbations to a set of vectors that can be used to represent the

analysis error covariance matrix. This strategy is feasible because the analysis

error covariance matrix can be computed explicitly from the background and

observational error covariance matrices. Since there is an infinite set of analysis

perturbations that can be used to represent the analysis error covariance matrix,

many different schemes can be derived following this approach (Tippett et al.,

2002). Existing examples of the square root filter approach are the Ensemble

Transform Kalman Filter (Bishop et al. 2001), the Ensemble Adjustment Filter

(Anderson 2001), and the Ensemble Square-root Filter (Whitaker and Hamill

2001).

The scheme we propose is a Kalman square-root filter 2. The most important

difference between our scheme and the other Kalman square-root filters is that

our analysis is done locally in model space. The assimilations in each local region

are independent, thus facilitating a massively parallel approach. The develop-

ment of this approach was motivated by the finding of Patil et al. (2001, 2002)

that synoptic scale ensemble perturbations restricted to a small region frequently

evolve in a low dimensional subspace of the full state space of that region. In

this sense, our paper is related to previous work that attempted to construct a

2The basic algorithm was first described in the paper Ott, E., B. H. Hunt, I. Szunyogh,

M. Corazza, E. Kalnay, D. J. Patil, J. A. Yorke, A. V. Zimin, and E. Kostelich, 2002: “Ex-

ploiting local low dimensionality of the atmospheric dynamics for efficient Kalman filtering”

(http://arxiv.org/abs/physics/0203058).
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simplified Kalman Filter by explicitly taking into account the dominant unstable

directions of the state space (Kalnay and Toth 1994; Fisher 1998).

Our scheme is based in the construction of local regions about each grid point.

An outline of the scheme is as follows.

1. Advance the analysis ensemble of global atmospheric states to the next anal-

ysis time, thus obtaining a new background ensemble of global atmospheric

states.

2. For each local region and each member of the background ensemble, form

vectors of the atmospheric state information in that local region.

3. In each local region, project the ‘local’ vectors, obtained in step 2, onto a

low dimensional subspace that best represents the ensemble in that region.

4. Do the data assimilation in each of the local low dimensional subspaces,

obtaining analyses in each local region.

5. Use the local analyses, obtained in step 4, to form a new global analysis

ensemble. (This is where the square root filter comes in.)

6. Go back to step 1.

This method is potentially advantageous in that the individual local analyses

are done in low dimensional subspaces, so that matrix operations involve only

relatively low dimensional matrices. Furthermore, since the individual analyses

in different local regions do not interact, they can be done independently in

parallel.

In the following sections we describe and test our new approach to data as-

similation. Section 4.2 introduces the concept of local regions and explains how
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the dimension of the local state vector can be further reduced. Section 4.3 ex-

plains the analysis scheme for the local regions. In section 4.4, the local analyses

are pieced together to obtain the global analysis field and the ensemble of global

analysis perturbations. Section 4.5 illustrates our data assimilation scheme by

an application to the 40-variable Lorenz model (Lorenz 1996).

4.2 Local vectors and their covariance

A model state of the atmosphere is given by a vector field x(r, t) where r is two

dimensional and runs over discrete values rmn (the grid in the physical space

used in the numerical computations). Typically, the two components of r are

the geographical longitude and latitude, and x at a fixed r is a vector of all

relevant physical state variables of the model (e.g., wind velocity components,

temperature, surface pressure, humidity, etc., at all height levels included in the

model). Let u denote the dimensionality of x(r, t) (at fixed r); e.g., when five

independent state variables are defined at 28 vertical levels, u = 140.

Data assimilation schemes generally treat x(r, t) as a random variable with a

time-dependent probability distribution. The distribution is updated over time

in two ways: (i) it is evolved according to the model dynamics; and (ii) it is

modified periodically to take into account recent atmospheric observations.

We do our analysis locally in model space (grid point by grid point). In this

section we introduce our local coordinate system and the approximations we make

to the local probability distribution of x(r, t). Since all the analysis operations

take place at a fixed time t, we will suppress the t dependence of all vectors and

matrices introduced henceforth.

Motivated by the works of Patil et al. (2001, 2002) we introduce at each point
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local vectors xmn of the information x(rm+m′,n+n′, t) for −l ≤ m′, n′ ≤ l. That is,

xmn specifies the model atmospheric state within a (2l + 1) by (2l + 1) patch of

grid points centered at rmn. (This particular shape of the local region was chosen

to keep the notations as simple as possible, but in general different (e.g., circular)

shape regions can also be considered.) The dimensionality of xmn is (2l + 1)2u.

We represent the construction of local vectors via a linear operator Mmn,

xmn = Mmnx(r, t). (4.1)

We now consider local vectors obtained from the model as forecasts, using initial

conditions distributed according to the result of the previous analysis, and we

denote these by xb
mn (where the superscript b stands for “background”). Let

Fmn(xb
mn) be our approximation to the probability density function for xb

mn at

the current analysis time t. A fundamental assumption is that this probability

distribution can be usefully approximated as Gaussian,

Fmn(xb
mn) ∼ exp

[− 1

2
(xb

mn − x̄b
mn)T (Pb

mn)−1(xb
mn − x̄b

mn)
]
, (4.2)

where Pb
mn and x̄b

mn are the local background error covariance matrix and most

probable state associated with Fmn(xb
mn). Graphically, the level set

Fmn(xb
mn) = e−1/2Fmn(x̄b

mn) (4.3)

is an ellipsoid as illustrated in Figure 4.1. The equation of this probability ellipsoid

is

(xb
mn − x̄b

mn)T (Pb
mn)−1(xb

mn − x̄b
mn) = 1. (4.4)

As explained subsequently, the rank of the (2l + 1)2u by (2l + 1)2u covariance

matrix Pb
mn for our approximate probability distribution function Fmn is much

less than (2l + 1)2u. Let

k = rank(Pb
mn); (4.5)
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Figure 4.1: Probability ellipsoid for xb
mn.

(k = 2 in Figure 1). Thus Pb
mn has a (2l+1)2u−k dimensional null space S̄mn and

the inverse (Pb
mn)−1 is defined for vectors (xb

mn − x̄b
mn) lying in the k dimensional

subspace Smn orthogonal to S̄mn, with Fmn defined to be zero if (xb
mn − x̄b

mn) is

not in Smn.

In the data assimilation procedure we describe in this work, the background

error covariance matrix Pb
mn and the most probable background state x̄b

mn are

derived from a k′ + 1 member ensemble of global state field vectors
{
xb(i)(r, t)

}
,
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i = 1, 2, · · · , k′ + 1; k′ ≥ k ≥ 1. The most probable state is given by

x̄b
mn = Mmn

[
(k′ + 1)

−1
k′+1∑
i=1

xb(i)(r, t)
]
. (4.6)

To obtain the local background error covariance matrix Pb
mn that we use in our

analysis, we first consider a matrix Pb′
mn given by

Pb′
mn = k′−1

k′+1∑
i=1

δxb(i)
mn

(
δxb(i)

mn

)T
, (4.7)

where

δxb(i)
mn = Mmnx

b(i)(r, t) − x̄b
mn(r, t). (4.8)

It is also useful to introduce the notation

Xb
mn = (k′)−1/2

[
δxb(1)

mn | δxb(2)
mn | · · · | δxb(k′+1)

mn

]
, (4.9)

in terms of which (4.7) can be rewritten,

Pb′
mn = Xb

mnX
bT
mn. (4.10)

Patil et al. (2001, 2002), using 30-pair ensembles of bred vectors (Toth and Kalnay

1993, 1997), have found that forecast uncertainties in the mid-latitude extra-

tropics tend to lie in a low dimensional subset of the (2l +1)2u dimensional local

vector space. Thus we anticipate that we can approximate the background error

covariance matrix by one of much lower rank than (2l + 1)2u, and this motivates

our assumption that an ensemble of size of k′ + 1, where k′ + 1 is substantially

less than (2l + 1)2u, will be sufficient to yield a good approximate representation

of the background covariance matrix. Typically, Pb′
mn has rank k′, i.e., it has k′

positive eigenvalues. Let the eigenvalues of the matrix Pb′
mn be denoted by λ

(j)
mn,

where the labeling convention for the index j is

λ(1)
mn ≥ λ(2)

mn ≥ . . . ≥ λ(k)
mn ≥ · · · ≥ λ(k′)

mn . (4.11)

66



Since Pb′
mn is a symmetric matrix, it has k′ orthonormal eigenvectors

{
u

(j)
mn

}
corresponding to the k′ eigenvalues (4.11). Thus

Pb′
mn =

k′∑
j=1

λ(j)
mnu

(j)
mn(u(j)

mn)T . (4.12)

We approximate Pb′
mn by truncating the sum at k ≤ k′

Pb
mn =

k∑
j=1

λ(j)
mnu

(j)
mn

(
u(j)

mn

)T
. (4.13)

In terms of u
(j)
mn and λ

(j)
mn, the principal axes of the probability ellipsoid (Figure

1) are given by √
λ

(j)
mnu

(j)
mn. (4.14)

The basic justification for the approximation of the covariance by Pb
mn is our

supposition, supported by Patil et al. (2002), that for reasonably small values of

k, the error variance in all other directions is much less than the variance,

k∑
j=1

λ(j)
mn, (4.15)

in the directions {u(j)
mn}, j = 1, 2, . . . , k. The truncated covariance matrix Pb

mn

is determined not only by the dynamics of the model but also by the choice of

the components of δx
b(i)
mn . In order to meaningfully compare eigenvalues, Equa-

tion (4.11), the different components of δx
b(i)
mn (e.g., wind and temperature) should

be properly scaled to ensure that, if the variance (4.15) approximates the full

variance, then the first k eigendirections, {u(j)
mn}, j = 1, 2, . . . , k, explain the im-

portant uncertainties in the background, x̄b
mn. In Patil et al. (2002), for instance,

the weights for the different variables were chosen so that the Euclidean norm

of the transformed vectors was equal to their total energy norm derived in Tala-

grand (1981). In what follows, we assume that the vector components are already
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properly scaled. (We also note that if k = k′, the comparison of eigenvalues is

not used and thus such a consistent scaling of the variables is not necessary.)

For the purpose of subsequent computation, we consider the coordinate system

for the k dimensional space Smn determined by the basis vectors {u(j)
mn}. We call

this the internal coordinate system for Smn. To change between the internal

coordinates and those of the local space, we introduce the (2l+1)2u by k matrix,

Qmn =
{
u(1)

mn|u(2)
mn| · · · |u(k)

mn

}
. (4.16)

We denote the projection of vectors into Smn and the restriction of matrices to

Smn by a superscribed circumflex (hat). Thus for a (2l+1)2u dimensional column

vector w, the vector ŵ is a k dimensional column vector given by

ŵ = QT
mnw. (4.17)

Note that this operation consists of both projecting w into Smn and changing to

the internal coordinate system. Similarly, for a (2l + 1)2u by (2l + 1)2u matrix

U, the matrix Û is k by k and given by

Û = QT
mnUQmn. (4.18)

To go back to the original (2l + 1)2u dimensional local vector space, note that

QT
mnQmn = I while QmnQ

T
mn represents projection on Smn, i.e. it has null space

S̄mn and acts as the identity on Smn. Then writing w as

w = w(‖) + w(⊥), (4.19)

w(‖) = Λ(‖)
mnw = Qmnŵ, w(⊥) = Λ(⊥)

mnw, (4.20)

where w(‖) and w(⊥) denote the components of w in Smn and S̄mn, respectively,

and the projection operators Λ
(‖)
mn and Λ

(⊥)
mn are given by

Λ(‖)
mn = QmnQ

T
mn, Λ(⊥)

mn = I −QmnQ
T
mn (4.21)
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In addition, if U is symmetric with null space S̄mn,

U = QmnÛQT
mn. (4.22)

Note that

P̂b
mn = diag

(
λ(1)

mn, λ
(2)
mn, ..., λ

(k)
mn

)
, (4.23)

and thus it is trivial to invert.

4.3 Data assimilation

With Section 4.2 as background, we now consider the assimilation of observational

data to obtain a new specification of the probability distribution of the local

vector. In what follows, the notational convention of Ide et al. (1997) is adopted

whenever it is possible.

Let xa
mn be the random variable at the current analysis time t representing

the local vector after knowledge of the observations is taken into account. For

simplicity, we assume that all observations collected for the current analysis were

taken at the same time t. Let yo
mn be the vector of current observations within

the local region, and assume that the errors in these observations are normally

distributed with covariance matrix Rmn. We also assume that the expected

observation vector ȳo
mn can be written as a linear operator Hmn times the true

local state of the atmosphere. (If there are s scalar observations in the local

(2l + 1) by (2l + 1) region at analysis time t, then ȳo
mn is s dimensional and

the rectangular matrix Hmn is s by (2l + 1)2u). Then, since we have assumed

the background (pre-analysis) state xb
mn to be normally distributed, it will follow

below that xa
mn is also normally distributed. Its distribution is determined by the

most probable state x̄a
mn and the associated covariance matrix Pa

mn. The data
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assimilation step determines x̄a
mn (the local analysis) and Pa

mn (the local analysis

covariance matrix ).

Since our approximate background covariance matrix Pb
mn has null space S̄mn,

we consider the perturbation component ∆x
a(‖)
mn = Λ

(‖)
mn

(
xa

mn − x̄b
mn

)
within the

k-dimensional subspace Smn, and do the data assimilation in Smn. Thus the data

assimilation is done by minimizing the quadratic form,

J
(
∆x̂a

mn

)
=
(
∆x̂a

mn

)T (
P̂b

mn

)−1
∆x̂a

mn

+
(
Ĥmn∆x̂a

mn + Hmnx̄
b
mn − yo

mn

)T
R−1

mn ×(
Ĥmn∆x̂a

mn + Hmnx̄
b
mn − yo

mn

)
. (4.24)

Here Ĥmn = HmnQmn maps Smn to the observation space, using the internal

coordinate system for Smn introduced in the previous section, so that ∆x
a(‖)
mn =

Qmn∆x̂a
mn. The most probable value of ∆x̂a

mn,

∆ˆ̄xa
mn = P̂a

mnĤ
T
mnR

−1
mn

(
yo

mn −Hmnx̄
b
mn

)
, (4.25)

is the minimizer of J
(
∆x̂a

mn

)
, where the analysis covariance matrix P̂a

mn is the

inverse of the matrix of second derivatives (Hessian) of J
(
∆x̂a

mn

)
with respect to

∆x̂a
mn,

P̂a
mn =

[(
P̂b

mn

)−1
+ ĤT

mnR
−1
mnĤmn

]−1
. (4.26)

For computational purposes, we prefer to use the alternate form,

P̂a
mn = P̂b

mn

[
I + ĤT

mnR
−1
mnĤmnP̂

b
mn

]−1
, (4.27)

both in place of (4.26) and in computing (4.25). A potential numerical advantage

of (4.27) over (4.26) is that (4.26) involves the inverse of P̂b
mn, which may be

problematic if P̂b
mn has a small eigenvalue.
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Another alternative is to compute (4.25) and (4.26) in terms of the “Kalman

gain” matrix

K̂mn = P̂b
mnĤ

T
mn

(
ĤmnP̂

b
mnĤ

T
mn + Rmn

)−1
. (4.28)

Then it can be shown (e.g., Kalnay 2002, p. 171) that (4.25) and (4.26)/(4.27)

are equivalent to

∆ˆ̄xa
mn = K̂mn

(
yo

mn − Hmnx̄
b
mn

)
, (4.29)

and

P̂a
mn =

(
I − K̂mnĤmn

)
P̂b

mn. (4.30)

Again, the inverse of P̂b
mn is not required.

Though (4.25) and (4.27) are mathematically equivalent to (4.28)–(4.30), the

former approach may be significantly more efficient computationally for the fol-

lowing reasons. In both cases, one must invert an s by s matrix, where s is

the number of local observations. While these matrices are considerably smaller

than those involved in global data assimilation schemes, they may still be quite

large. Generally the s by s matrix Rmn whose inverse is required in (4.27) will be

diagonal or close to diagonal, and thus less expensive to invert than the matrix

inverted in (4.28). (Furthermore, in some cases one may be able to treat Rmn as

time-independent and avoid recomputing its inverse for each successive analysis.)

The additional inverse required in (4.27) is of a k by k matrix, where k ≤ k′ may

be relatively small compared to s if the number of observations in the local region

(m, n) is large.

Finally, going back to the local space representation, we have

x̄a
mn = Qmn∆ˆ̄xa

mn + x̄b
mn, (4.31)
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4.4 Updating the ensemble

We now wish to use the analysis information, P̂a
mn and x̄a

mn, to obtain an ensemble

of global analysis fields
{
xa(i)(r, t)

}
; i = 1, 2, · · · , k′ + 1. Once these fields are

determined, they can be used as initial conditions for the atmospheric model.

Integrating these global fields forward in time to the next analysis time t + ∆t,

we obtain the background ensemble
{
xb(i)(r, t + ∆t)

}
. This completes the loop,

and, if the procedure is stable, it can be repeated for as long as desired. Thus at

each analysis time we are in possession of a global initial condition that can be

used for making forecasts of the desired durations.

Our remaining task is to specify the ensemble of global analysis fields
{
xa(i)(r, t)

}
from our analysis information, P̂a

mn and x̄a
mn. Denote (k′+1) local analysis vectors

by

xa(i)
mn = x̄a

mn + δxa(i)
mn (4.32)

δxa(i)
mn = δxa(i)(‖)

mn + δxa(i)(⊥)
mn , (4.33)

δxa(i)(‖)
mn = Λ(‖)

mnδx
a(i)
mn , δxa(i)(⊥)

mn = Λ(⊥)
mnδxa(i)

mn , (4.34)

δxa(i)(⊥)
mn = δxb(i)(⊥)

mn . (4.35)

Combining (4.20) and (4.32)-(4.35), we have

xa(i)
mn = x̄a

mn + Qmnδx̂
a(i) + Λ(⊥)

mnδxb(i)
mn . (4.36)

Equation (4.35) results because our analysis uses the observations only to reduce

the variance in the space Smn, leaving the variance in S̄mn unchanged. (We note,

however, that by our construction of S̄mn in section 4.2, the total variance in S̄mn

is expected to be small compared to that in Smn.) We require that

k′+1∑
i=1

δxa(i)
mn = 0, (4.37)
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which, by virtue of (4.34), (4.35), and (from (4.6) and (4.8))

k′+1∑
i=1

δxb(i)
mn = 0, (4.38)

implies
k′+1∑
i=1

δxa(i)(‖)
mn =

k′+1∑
i=1

Qmnδx̂
a(i)
mn = Qmn

k′+1∑
i=1

δx̂a(i)
mn = 0. (4.39)

Thus we require that
k′+1∑
i=1

δx̂a(i)
mn = 0. (4.40)

In addition, P̂a
mn is given by

P̂a
mn = k′−1

k′+1∑
i=1

δx̂a(i)
mn

(
δx̂a(i)

mn

)T
. (4.41)

Hence the local analysis state x̄a
mn (determined in Section 4.3) is the mean over the

local analysis ensemble
{
x

a(i)
mn

}
, and, by (4.41),

{
δx̂

a(i)
mn

}
gives a representation of

the local analysis error covariance matrix. We now turn to the task of determining

the analysis perturbations
{
δx̂

a(i)
mn

}
. Once these are known

{
x

a(i)
mn

}
is determined

from (4.36).

4.4.1 Determining the ensemble of local analysis pertur-

bations

There are many choices for
{
δx̂

a(i)
mn

}
that satisfy (4.40) and (4.41), and in this

section we will describe possible methods for computing a set of solutions to

these equations. See also Tippett et al. (2002) for different approaches to this

problem in the global setting. In a given forecasting scenario, one could compare

the accuracy and speed of these methods in order to choose among them. There

are two main criteria we have in mind in formulating these methods.
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First, the method for computing
{
δx̂

a(i)
mn

}
should be numerically stable and

efficient. Second, since we wish to specify global fields that we think of as being

similar to physical fields, we desire that these fields be slowly varying in m and

n. That is, if P̂a
mn is slowly varying, we do not want to introduce any artificial

rapid variations in the individual δx̂
a(i)
mn through our method of constructing a

solution of (4.40) and (4.41). For this purpose we regard the background vectors

as physical states, and hence slowly varying in m and n. (This is reasonable since

the background ensemble is obtained from evolution of the atmospheric model

from time t − ∆t to time t.)

Thus we are motivated to express the analysis ensemble vectors δx̂
a(i)
mn as

formally linearly related to the background ensemble vectors. We consider two

possible methods for doing this. In the first method, we relate δx̂
a(i)
mn to the

background vector with the same label i,

δx̂a(i)
mn = Zmnδx̂b(i)

mn , (4.42)

where

δx̂b(i)
mn = QT

mnδxb(i)
mn . (4.43)

(Note that the apparent linear relation between the background and analysis in

(4.42) is only formal, since our solution for Zmn will depend on the background.)

In the second method, we formally express δx̂
a(i)
mn as a linear combination of the

vectors, δx̂
b(1)
mn , δx̂

b(2)
mn , · · · , δx̂

b(k′+1)
mn ,

X̂a
mn = X̂b

mnYmn. (4.44)

where

X̂a,b
mn =

(
k′)−1/2{

δx̂a,b(1)
mn |δx̂a,b(2)

mn | · · · |δx̂a,b(k′+1)
mn

}
(4.45)
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Using (4.45) the analysis and the background covariance matrices can be ex-

pressed as

P̂a,b = X̂a,b
mnX̂

a,bT
mn . (4.46)

The k × k matrix Zmn or the (k′ + 1) × (k′ + 1) matrix Ymn can be thought of

as a generalized ‘rescaling’ of the original background fields. This ‘rescaling’ can

be viewed as being similar to the techniques employed in the breeding method

(Toth and Kalnay, 1993) and in the Ensemble Transform Kalman Filter approach

(Bishop et al., 2001; Wang and Bishop, 2002). If Zmn or Ymn, respectively, vary

slowly with m and n, then by (4.42) and (4.44) so will δx̂
a(i)
mn .

Considering (4.42), we see that (4.40) is automatically satisfied because by

(4.38) and (4.43) the background perturbations δx̂
b(i)
mn sum to zero,

X̂b
mnv = 0, (4.47)

where v is a column vector of (k′ + 1) ones. The analysis perturbations given by

(4.42) will satisfy (4.41) [equivalently (4.46)] if, and only if,

P̂a
mn = ZmnP̂

b
mnZ

T
mn. (4.48)

Considering (4.44), we see that (4.46) yields the following equation for Ymn

P̂a
mn = X̂b

mnYmnY
T
mnX̂

bT
mn (4.49)

Unlike (4.42) for Zmn, (4.44) does not imply automatic satisfaction of (4.40). We

note that (4.40) can be written as

X̂a
mnv = 0. (4.50)

Thus, in addition to (4.49), we demand that Ymn must also satisfy

X̂b
mnYmnv = 0. (4.51)
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Equation (4.48) has infinitely many solutions for Zmn. Similarly, equations

(4.49) and (4.51) have infinitely many solutions for Ymn. In order for the results

to vary slowly from one grid point to the next, it is important that we use an

algorithm for computing a particular solution that depends continuously on P̂a
mn

and P̂b
mn.

4.4.2 Solutions of Equation (4.48)

Solution 1

One solution Zmn is

Zmn =
(
P̂a

mn

)1/2(
P̂b

mn

)−1/2
, (4.52)

where in (4.52), by the notation M1/2, we mean the unique positive symmetric

square root of the positive symmetric matrix M. In terms of the eigenvectors

and eigenvalues of M, the positive symmetric square root is

M1/2 =

k∑
j=1

√
ν(j)m(j)

(
m(j)
)T

, (4.53)

where

Mm(j) = ν(j)m(j). (4.54)

Recall that P̂b
mn is diagonal, so that its inverse square root in (4.52) is easily

computed.

Solution 2

Pre- and post-multiplying (4.48) by
(
P̂b

mn

)1/2
and taking Zmn to be symmetric,

[(
P̂b

mn

)1/2
Zmn

(
P̂b

mn

)1/2]2
=
(
P̂b

mn

)1/2
P̂a

mn

(
P̂b

mn

)1/2
. (4.55)
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Taking the positive symmetric square root of (4.55), we obtain a second possible

solution of (4.48),

Zmn =
(
P̂b

mn

)−1/2
[(

P̂b
mn

)1/2
P̂a

mn

(
P̂b

mn

)1/2
]1/2(

P̂b
mn

)−1/2
. (4.56)

In contrast to solution 1 (given by (4.52)) and solutions 3 (given below), this

solution yields a Zmn that is symmetric, Zmn = ZT
mn.

Family of solutions

We can create a family of solutions for Zmn by introducing an arbitrary positive

symmetric matrix Dmn and by pre- and post-multiplying (4.48) by D
−1/2
mn . This

yields

P̃a
mn = Z̃mnP̃

b
mnZ̃

T
mn, (4.57)

where

Z̃mn = D−1/2
mn ZmnD

1/2
mn, (4.58)

P̃a,b
mn = D−1/2

mn P̂a,b
mnD

−1/2
mn . (4.59)

Applying solution 2 to (4.57) we obtain (4.56) with Zmn and P̂a,b
mn replaced by

Z̃mn and P̃a,b
mn, Then, applying (4.58) and (4.59), we find that the unique solution

to (4.48) such that D
−1/2
mn ZmnD

1/2
mn is symmetric is

Zmn = D1/2
mn

(
P̃b

mn

)−1/2
[(

P̃b
mn

)−1/2
P̃a

mn

(
P̃b

mn

)−1/2
]1/2(

P̃b
mn

)−1/2
D−1/2

mn . (4.60)

Thus for any choice of Dmn we obtain a solution Zmn of (4.48), and this is the

unique solution for Zmn subject to the added condition that D
−1/2
mn ZmnD

1/2
mn is

symmetric.

Another way to generate a family of solutions is to replace (4.52) by

Zmn =

√
P̂a

mn

√
P̂b−1

mn

T

, (4.61)
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where for a positive definite symmetric matrix M, we mean by
√

M any matrix

for which
√

M
√

M
T

= M. Note that this equation does not uniquely determine
√

M, and that given any solution
√

M = W, the most general solution is
√

M =

WO where O is any orthogonal matrix. In particular, the positive symmetric

square root (which we denote M1/2) is a specific choice for
√

M, and, in general,
√

M = M1/2O. Furthermore, by considering all possible matrices

√
P̂a

mn we

obtain all possible solutions Zmn of (4.48). Thus we can write a general solution

of (4.48) as

Zmn =
(
P̂a

mn

)1/2
Omn

(
P̂b−1

mn

)1/2
, (4.62)

where Omn is an arbitrary orthogonal matrix. (Note that Omn can be a function

of P̂a
mn and P̂b

mn.) The family of solutions of (4.48) given by (4.60) with different

Dmn is smaller than the family given by (4.62) with different Omn. In particular,

the family (4.62), being the most general solution of (4.48), must contain the

family corresponding to (4.60). To see that the later family is indeed smaller

than the former family, consider the special case, P̂a
mn = P̂b

mn. For P̂a
mn = P̂b

mn,

(4.60) always gives Zmn = I, while (4.62) gives

Zmn =
(
P̂a

mn

)1/2
O(o)

mn

(
P̂a

mn

)1/2
, (4.63)

which is never I unless the orthogonal matrix O
(o)
mn is I. (Here O

(o)
mn denotes Omn

evaluated at P̂a
mn = P̂b

mn.) Based on our treatment in section 4.4.3, we believe

that the smaller family, given by (4.60) with different Dmn, gives results for X̂a
mn

that are more likely to be useful for our purposes.

Solution 3

Subsequently, special interest will attach to the choices Dmn = P̂b
mn and Dmn =

P̂a
mn in (4.60). Although these two choices yield results from (4.59) and (4.60)
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that appear to be of quite different form, the two results for Zmn are in fact the

same. We call this solution for Zmn solution 3. To see that these two Dmn choices

yield the same Zmn, we note that (4.48) can be put in the form,

(
P̂a

mn

)1/2
[(

P̂a
mn

)−1/2
Zmn

(
P̂a

mn

)1/2
]−1(

P̂a
mn

)1/2
= (4.64a)

=
(
P̂b

mn

)1/2
[(

P̂b
mn

)−1/2
Zmn

(
P̂b

mn

)1/2
]T (

P̂b
mn

)1/2
.

Thus symmetry of
(
P̂a

mn

)−1/2
Zmn

(
P̂a

mn

)1/2
(i.e., Dmn = Pa

mn in (4.60)) implies

symmetry of
(
P̂b

mn

)−1/2
Zmn

(
P̂b

mn

)1/2
(i.e., Dmn = P̂b

mn in (4.60)) and vice versa.

Hence, the two choices for Dmn necessarily yield the same Zmn. Explicitely,

setting Dmn = P̂b
mn in (4.60) we can write solution 3 as

Zmn =
(
P̂b

mn

)1/2
[(

P̂b
mn

)−1/2
P̂a

mn

(
P̂b

mn

)−1/2
]1/2(

P̂b
mn

)−1/2
. (4.65)

4.4.3 ‘Optimal’ choices for Zmn

Since we think of the background ensemble members as physical fields, it is

reasonable to seek to choose the analysis ensemble members δx̂
a(i)
mn in such a way

as to minimize their difference,

F(δx̂a(i)
mn ) =

k′+1∑
i=1

∥∥δx̂a(i)
mn − δx̂b(i)

mn

∥∥2 =
k′+1∑
i=1

[
δx̂a(i)

mn − δx̂b(i)
mn

]T [
δx̂a(i)

mn − δx̂b(i)
mn

]
, (4.66)

with the analysis ensemble members δx̂
a(i)
mn , subject to the requirement that (4.41)

be satisfied. Thus, introducing a k × k matrix Bmn of Lagrange multipliers, we

form the following quantity,

L =
k′+1∑
i=1

[
δx̂a(i)

mn − δx̂b(i)
mn

]T [
δx̂a(i)

mn − δx̂b(i)
mn

]− (4.67a)

−
k∑

p,q=1

(Bmn)p,q

[(
P̂a

mn

)
p,q

− 1

k′

k′+1∑
i=1

(
δx̂a(i)

mn

)
p

(
δx̂a(i)

mn

)
q

]
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which we minimize with respect to δx̂
a(i)
mn and Bmn. Forming the first and second

derivatives of L with respect to δx̂
a(i)
mn , we have

1

2

∂L
∂δx̂

a(i)
mn

= Z−1
mnδx̂a(i)

mn − δx̂b(i)
mn , (4.68)

1

2

∂2L
∂δx̂

a(i)
mn ∂δx̂

a(i)
mn

= Z−1
mn, (4.69)

where we have defined Z−1
mn as

Z−1
mn = I +

1

2k′
(
Bmn + BT

mn

)
. (4.70)

Since L is stationary, (4.68) implies (4.42), and the derivative with respect to Bmn

returns (4.41). Since L is minimum, (4.69) implies that Zmn is positive, while

(4.70) gives Zmn = ZT
mn. Thus the solution that minimizes F(x̂

a(i)
mn ) is obtained

from the unique symmetric positive solution for Zmn. This is given by solution 2

(4.56).

It is also of interest to consider different metrics for the distance between

the analysis ensemble
{
δx̂

a(i)
mn

}
and the background ensemble

{
δx̂

b(i)
mn

}
. Thus we

minimize the quadratic form,

FD(δx̂a(i)
mn ) =

k′+1∑
i=1

∥∥δx̂a(i)
mn − δx̂b(i)

mn

∥∥2

D
=

k′+1∑
i=1

[
δx̂a(i)

mn − δx̂b(i)
mn

]T
D−1

mn

[
δx̂a(i)

mn − δx̂b(i)
mn

]
,

(4.71)

where the positive symmetric matrix Dmn specifies the metric. (The quadratic

form F(δx̂
a(i)
mn ) is the special case of FD(δx̂

a(i)
mn ) when the metric is defined by

the identity matrix, Dmn = I). The introduction of the metric matrix Dmn is

equivalent to making the change of variables, X̃a,b
mn = (Dmn)−1/2X̂a,b

mn. Inserting

this change of variables in (4.56), we obtain (4.60).

Solution 3, namely Dmn equal to P̂b
mn or P̂a

mn, appears to be favorable in that

it provides a natural intuitive normalizations for the distance. We thus conjecture

that solutions 3 may yield better performance than solutions 1 and 2.
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4.4.4 Solution of (4.49) and (4.51)

Another way of solving for the analysis fields is to use the ‘Potter method’ (e.g.,

Biermann 1977). To see how this solution is obtained, let

Amn = YmnY
T
mn (4.72)

so that (4.49) becomes

P̂a
mn = X̂b

mnAmnX̂
bT
mn (4.73)

Because P̂a
mn is k × k and Amn is (k′ + 1) × (k′ + 1), there is a lot of freedom in

choosing Amn. It seems reasonable that, if the analysis covariance and the back-

ground covariance are the same (i.e., P̂a
mn = P̂b

mn), then the ensemble analysis

perturbations should be set equal to the ensemble background perturbations:

Ymn = I if P̂a
mn = P̂b

mn. (4.74)

A solution for Amn consistent with (4.72)-(4.74) is

Amn = I + X̂bT
mnP̂

b−1
mn

[
P̂a

mn − P̂b
mn

]
P̂b−1

mn X̂b
mn. (4.75)

This solution for Amn is symmetric and can also be shown to be positive definite.

Equation (4.75) yields Amn = I if P̂a
mn = P̂b

mn, as required by (4.72) and (4.74),

and satisfaction of (4.73) by (4.75) can be verified by direct substitution and

making use of P̂b
mn = X̂b

mnX̂
bT
mn. From (4.72) we have Ymn =

√
Amn, and, if the

positive symmetric square root is chosen, then (4.74) is satisfied. Thus we have

as a possible solution

Ymn = (Amn)1/2. (4.76)

It remains to show that (4.75) and (4.76) also satisfies (4.51). By (4.75) and

(4.47) we have Amnv = v; i.e., v is an eigenvector of Amn with eigenvalue one.
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Since the positive square root is employed in (4.76) v is also an eigenvector of

Ymn with eigenvalue one. Hence Xb
mnYmnv = Xb

mnv, which is identically zero

by (4.47), thus satisfying (4.51).

Potter’s expression for Amn is obtained by using (4.28) and (4.30) in (4.74)

and (4.76),

Amn = I − X̂bT
mnĤ

T
mn

[
ĤmnP̂

b
mnĤ

T
mn + Rmn

]−1
ĤmnX̂

b
mn. (4.77)

For (4.76) and (4.77) the square root is taken of a k′ +1 by k′ +1 matrix, but the

inverse is of an s by s matrix, where s is the dimension of the local observation

space. An equivalent way to write (4.77) in our setting is

Amn = I − X̂bT
mnV̂mnĤ

T
mnR

−1
mnĤmnX̂

b
mn, (4.78)

where

V̂ =
[
I + ĤT

mnR
−1
mnĤmnP̂

b
mn

]−1
. (4.79)

Now aside from Rmn, we need only invert a k by k matrix. As previously dis-

cussed, although Rmn is s by s, its inverse is easily computed even when s is

much larger than k.

We now ask whether different solutions of (4.48) for Zmn have corresponding

Ymn such that ZmnX̂
b
mn and X̂b

mnYmn yield the same result for X̂a
mn. To see

that they do, we note that the matrix X̂b
mn (which consists of k rows and k′ + 1

columns) has a (nonunique) right inverse
(
X̂b

mn

)−1
such that X̂b

mn

(
X̂b

mn

)−1
= Ik,

where

(
X̂b

mn

)−1
= X̂bT

mn

(
X̂b

mnX̂
bT
mn

)−1
+ Emn = X̂bT

mn

(
P̂b

mn

)−1
+ Emn, (4.80)

and Emn is any k × (k′ + 1) matrix for which X̂b
mnEmn = 0mn. Thus, from

X̂a
mn = ZmnX̂

b
mn, we have

X̂a
mn = X̂b

mn

(
X̂b

mn

)−1
ZmnX̂

b
mn. (4.81)
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From the definition of Ymn, X̂a
mn = X̂b

mnYmn, we see that (4.81) and (4.80) yields

Ymn = X̂bT
mn

(
P̂b

mn

)−1
ZmnX̂

b
mn + Gmn, (4.82)

where Gmn is any (k′ + 1) by (k′ + 1) matrix satisfying X̂b
mnGmn = 0. Since we

desire that Ymn = Ik′+1, when Zmn = Ik, a possible choice for Gmn is

Gmn = Ik′+1 − X̂bT
mn

(
P̂b

mn

)−1
X̂b

mn. (4.83)

(We note that Gmn given by (4.83) is a projection operator (i.e., an idempotent

matrix), (Gmn)p = Gmn for any integer exponent p.) Thus from (4.82) and

(4.83), a Ymn corresponding to any solution Zmn (e.g., solution 1, 2 or 3) is

Ymn = X̂bT
mn

(
P̂b

mn

)−1
(Zmn − Ik)X̂

b
mn + Ik′+1. (4.84)

Using (4.84), (4.48), and (4.47) it can be verified that YmnY
T
mn = Amn with Amn

given by (4.75). Thus YmnY
T
mn is the same (k′+1)×(k′+1) matrix for all solutions

Zmn (e.g., solutions 1,2, and 3). The general solution of YmnY
T
mn = Amn is

Ymn =
√

Amn = (Amn)1/2Omn, (4.85)

where Omn is an arbitrary orthogonal matrix. However, to ensure that (4.51) is

satisfied we also require that Omnv = ±v; i.e., that v is an eigenvector of Omn.

For example, Omn can be any rotation about v. Thus there is still a large family

of allowed orthogonal matrices Omn. (Note that Omn can depend on P̂a
mn and

P̂b
mn, and that for (4.74) to be satisfied, Omn must be I whenever P̂a

mn = P̂b
mn.)

Hence we can think of the various solutions for Ymn either as being generated by

(4.60) and (4.84) with different choices for the metric matrix Dmn, or as being

generated by (4.75) and (4.85) with different choices for the orthogonal matrix

Omn.

83



In Appendix B we show that the solution for which Ymn is symmetric, (4.76),

is the same as that given by solution 3 for Zmn. That is, ZmnX̂
b
mn with Zmn given

by (4.65) and X̂b
mnYmn with Ymn given by (4.75) and (4.76) both yield the same

result for X̂a
mn. Also, in Appendix C we show that Ymn as given by (4.84) can be

used to directly obtain the analysis Xa
mn (note the absence of the superscribed

circumflex on Xa
mn).

4.4.5 Construction of the global fields

Regardless of which of these solution methods for {δx̂a(i)
mn } is chosen, by use of

(4.36) we now have (k′ + 1) local analyses x
a(i)
mn at each point rmn, and it now

remains to construct an ensemble of global fields
{
xa(i)(r, t)

}
that can be prop-

agated forward in time to the next analysis time. There are various ways of

doing this. One method (used in our numerical example of section 4.5) takes into

account all the atmospheric states at the point rmn obtained from each of the

(2l + 1)2 local vectors x
a(i)
m−m′,n−n′ (|m′| ≤ l, |n′| ≤ l) that include the point rmn.

In particular, these (2l + 1)2 states at rmn are averaged to obtain xa(i)(r, t).

4.4.6 Variance inflation

In past work on ensemble Kalman filters (Anderson and Anderson 1999; Whitaker

and Hamill 2002) it was found that inflating the covariance (Pa or Pb) by a

constant factor on each analysis step, leads to more stable and improved analyses.

One rationale for doing this is to compensate for the effect of finite sample size,

which can be shown to, on average, underestimate the covariance. In addition,

in Section 4.5 and Appendix D we will investigate the usefulness of enhancing

the probability of error in directions that formally show only very small error
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probability. Following such a modification of P̂a
mn [P̂b

mn], for consistency, we also

make modifications to the ensemble perturbations δx̂
a(i)
mn [δx̂

b(i)
mn ] so as to preserve

the relationship (4.41) [(4.46)]. (Again, similar to the discussion in Section 4.4.2,

the choice of these modifications is not unique.)

In our numerical experiments in section 4.5 we will consider two methods of

variance inflation. One method, which we refer to as regular variance inflation,

multiplies all background perturbations δx̂
b(i)
mn by a constant (1 + δ). This corre-

sponds to multiplying P̂b
mn by (1+δ)2. This method has been previously used by

Anderson and Anderson (1999) and by Whitaker and Hamill (2002). In addition

to this method, in Appendix D we introduce a second variance inflation method,

which, as our results of section 4.5 indicate, may yield superior performance. We

refer to this method as enhanced variance inflation.

4.5 Numerical experiments

4.5.1 40-variable Lorenz model

The skill of the proposed local ensemble Kalman Filter scheme is demonstrated

by Observing System Simulation Experiments (OSSE’s) carried out with the 40-

variable Lorenz (L40) model (Lorenz 1996; Lorenz and Emanuel 1998),

dxm

dt
= (xm+1 − xm−2)xm−1 − xm + F. (4.86)

Here, m = 1, · · · , 40, where x−1 = x39, x0 = x40, and x41 = x1. This model

mimics the time evolution of an unspecified scalar meteorological quantity, x,

at 40 grid points along a latitude circle. We solve (4.86) with a fourth-order

Runge-Kutta time integration scheme with a time step of 0.05 non-dimensional
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unit (which may be thought of as nominally equivalent to 6-h in real world time

assuming that the characteristic time scale of dissipation in the atmosphere is

5-days; see Lorenz 1996 for details).

For our chosen forcing, F = 8, the steady state solution, xm = F for

m = 1, · · · , 40, in (4.86) is linearly unstable. This instability is associated with

unstable dispersive waves characterized by westward (i.e., in the direction of de-

creasing m) phase velocities and eastward group velocities. Lorenz and Emanuel

(1998) demonstrated by numerical experiments for F = 8 that the x field is dom-

inated by a wave number 8 structure, and that the system is chaotic; it has 13

positive Lyapunov exponents, and its Lyapunov dimension (Kaplan and Yorke

1979) is 27.1. It can be expected that, due to the eastward group velocities,

growing uncertainties in the knowledge of the model state propagate eastward.

A similar process can be observed in operational numerical weather forecasts,

where dispersive short (longitudinal wave number 6-9) Rossby waves, generated

by baroclinic instabilities, play a key role in the eastward propagation of uncer-

tainties (e.g., Persson 2000; Szunyogh et al. 2002; and Zimin et al. 2003).

4.5.2 Rms analysis error

The 40-variable Lorenz model was also used by Whitaker and Hamill (2002)

to validate their ensemble square root filter (EnSRF) approach. In designing

our OSSE’s we follow their approach of first generating the ‘true state’, xt
m(t),

m = 1, · · · , 40, by a long (40,000 time-step) model integration; then creating

‘observations’ of all model variables at each time step by adding uncorrelated

normally distributed random noise with unit variance to the ‘true state’ (i.e.,

Rmn = I). (The rms random observational noise variance of 1.00 is to be com-
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pared with the value 3.61 of the time mean rms deviation of solutions, xm(t), of

(4.86) from their mean.) The observations are assimilated at each time step, and

the accuracy of the analysis is measured by the time mean of the rms error,

E =
( 1

40

40∑
m=1

(x̄a
m − xt

m)2
)1/2

. (4.87)

Thus, our ‘true state’ and observations are generated in the same way as in

Whitaker and Hamill (2002). Also, we use the same ensemble size as Whitaker

and Hamill (k′ + 1 = 10). Hence our analysis error results and theirs can be

directly compared.

4.5.3 The ‘optimal’ error

For the sake of comparison with our local Kalman filter results, we now establish

a standard that can be regarded as the best achievable result that could be

obtained given that computer resources placed no constraint on computations of

the analysis. (In contrast with operational weather prediction, for our simple 40-

variable Lorenz model, this is indeed the case.) For this purpose, we considered

the state x(t) =
(
x1(t), x2(t), · · · , x40(t)

)
on the entire domain rather than on

a local patch. Then several Kalman filter runs were carried out with different

numbers of ensemble members. In these integrations, full (k′) rank estimates

of the covariance matrices were considered and the ensemble perturbations were

updated using (4.74), (4.76), and (4.90) of Appendix C. (Section ). We found

that at about k′ + 1 = 100 ensemble members the time mean of E converged to

0.20 and that no reduction of error occurred upon further increase of k′. We refer

to this value as the optimal error, and we regard it as a comparison standard

for our local Kalman filter method. We now describe the implementation of our

method on the 40-variable Lorenz-model.
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4.5.4 Analysis results

From (4.26) we know that for our OSSE’s (Rmn = I, Ĥmn = Qmn), the analysis

error covariance matrix is
ˆ

Pa
mn =

[(
P

b

mn

)−1
+I
]−1

. Thus P̂a
mn and P̂b

mn commute.

In this case (4.52), (4.56), and (4.65) are identical. Hence solutions 1, 2, and 3

are the same solution. We implement this solution using (4.74) and (4.90) of

Appendix C.

In our experiments, the local analysis covariance matrix is computed by (4.27)

and the local analysis is obtained by (4.25). The analysis ensemble is updated by

(4.74) and (4.90) of Appendix C, and the variance of the background ensemble is

increased by a factor of 1 + ε in each step using the enhanced variance inflation

algorithm (see Appendix D for detail). The final analysis at each point m is

computed by averaging the (2l+1) local analyses whose local regions include the

point m (a one-dimensional version of section 4.4.6).

The free parameters of our scheme are the dimensionality of the local regions

(which is 2l + 1), the rank of the covariance matrices (k), and the coefficient (ε)

in the enhanced variance inflation algorithm. In what follows, the sensitivity of

the data assimilation scheme to the tunable free parameters is investigated by

numerical experiments (k′ is held fixed at k′ = 9).

In the first experiment the variance inflation coefficient is constant, ε = 0.012,

while the dimension of the local vectors (2l + 1) and the rank (k) of the back-

ground covariance matrix are varied. The results are shown in Table 4.1. The

scheme seems to be stable and accurate for a wide range of parameters. The

optimal size local region consists of 2l + 1 = 11, 13 grid points, at which rank

k = 5, 6, 7, 8, 9 estimates of the background covariance matrix provide similarly

accurate analyses. Moreover, rank 3 and 4 estimates lead to surprisingly accu-
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k 3 4 5 6 7 8 9

2l + 1

5 0.24 0.23

7 0.22 0.22 0.21 0.22

9 0.22 0.21 0.21 0.21 0.21 0.21

11 D D 0.20 0.20 0.20 0.20 0.20

13 D D 0.20 0.20 0.20 0.20 0.20

15 D D D 0.22 0.20 0.2 0.20

Table 4.1: Dependence of the time mean rms error on the box size (2l + 1) and

the rank (k) of the background covariance matrix. The symbol D stands for time

mean rms errors larger than one, which is the rms mean of the observational

errors. The coefficient of the enhanced variance inflation is ε = 0.012.

rate analyses for the smaller size (2l + 1 = 5, 7, 9) local regions. This indicates

that the background uncertainty in a local region at a given time (P̂b
mn) can be

well approximated in a low (k) dimensional linear space. Our premise, that the

dimension of this space can be significantly lower than the number of ensemble

members (k′ + 1) needed to evolve the uncertainty, proved to be correct for the

L40 model. (We note that the local dimensionality k is also much smaller than

the ”global” Lyapunov-dimension, 27.1, of the system). On the practical side,

this result suggests that, at least for the L40 model, the efficiency of the analysis

scheme can be significantly improved by using ranks that are smaller than the

dimension of the local vectors and the number of ensemble members. We note

that our best results are at least as good as the best results published in Whitaker

and Hamill (2002) and attain the optimal value (0.20) from section 4.5.3.
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k 4 5 6 7 8 9

ε

0.008 D D 0.44 0.20 0.20 0.20

0.010 D D 0.2 0.2 0.20 0.20

0.012 D 0.20 0.20 0.20 0.20 0.20

0.014 D 0.20 0.20 0.20 0.20 0.20

0.016 D 0.20 0.20 0.20 0.20 0.20

0.018 D 0.20 0.20 0.20 0.20 0.20

0.020 0.21 0.20 0.20 0.20 0.20 0.20

Table 4.2: Dependence of the time mean rms error on the coefficient (ε) of the

enhanced variance inflation scheme and the rank (k) of the background covariance

matrix. The meaning of D is the same as in Table 4.1. The window size is 13.

In the second experiment, the dimension of the local regions is constant (2l +

1 = 13), while the rank and the variance inflation coefficient are varying. The

results are shown in Table 4.2 . While lower rank estimates of the background

error covariance matrix require somewhat stronger variance inflation, the results

are not sensitive to the choice of ε once it is larger than a critical value. (By

critical value we mean the smallest ε that provides the optimal error).

The second experiment was then repeated by using the regular variance in-

flation of Anderson and Anderson (1999) and Whitaker and Hamill (2002). In

the regular variance inflation, all background ensemble perturbations are mul-

tiplied by r = 1 + δ, where δ is small, 1 	 δ > 0. This inflation strategy

increases the total variance in the background ensemble by a factor of (1 + ∆) =

1 + δ2 + 2δ ≈ 1 + 2δ. It can be seen from Table 4.5.4 that, except for k = 4,
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Figure 4.2: The ratio d(j) at m = 1 as function of j for two different values of ε

and ∆.
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Figure 4.3: Projection of the true background error, bm on the main axes of the

probability ellipsoid.
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Figure 4.4: The time evolution of the rms analysis error. The inserted panel

shows the time evolution of the spike in more detail.
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the critical value of ε is less than half of the critical value of ∆. The main dif-

ference between the two inflation schemes is that the enhanced scheme inflates

the dominant eigendirections of the background covariance matrix less aggres-

sively, and the least dominant eigendirections more aggressively. The numerical

results suggest that this feature of the scheme is beneficial, indicating that the

ensemble-based estimate of the background error is more reliable in the more

unstable directions than in the other directions. This is also well illustrated by

the quantitative results shown in Figure 4.2. To explain this figure, we define

the true background error, bm = xt
m − x̄b

m by the difference between the truth,

xt
m and the background mean, x̄b

m. We also define b
(j)
m = bT

mu
(j)
m , the component

of bm along the semi-axis of the probability ellipsoid, corresponding to the jth

largest eigenvalue of Pb
m, where j = 1, 2, · · · , k. (The case k = 2 is illustrated

in Figure 4.3.) For an ensemble that correctly estimates the uncertainty in each

basis direction, the time means of

d(j)
m =

(
b(j)
m

2
/λ(j)

m

)1/2
, j = 1, 2, · · · , k, (4.88)

should be close to one. When, for a given j, the ratio d
(j)
m is smaller than one,

the ensemble tends to overestimate the distance between the truth and the back-

ground in the u
(j)
m direction. When d

(j)
m is larger than one, the ensemble underes-

timates this distance. Figure 4.2 shows that with the enhanced variance inflation

the behavior of the ensemble is much better than with the regular variance in-

flation. This is especially true for the less dominant eigendirections, for which

the ensemble with regular variance inflation significantly (by about a factor of 6)

underestimates the distance between the truth and the mean background. We

found that ‖bm‖2 −∑9
j=1 b

(j)
m

2
, the true background variance unexplained by the

directions, u
(j)
m , j = 1, 2, · · · , 9; is about 3% of the true total variance (‖bm‖2)
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for all four cases shown in Figure 4.2. Thus the results indicate that the superior

performance of the enhanced variance inflation is due to the better distribution

of the variance between the resolved directions. We note that this advantage of

the enhanced variance inflation could not be exploited if the analysis was not

done in Smn introduced in Section 4.2.

An interesting feature is the anomalously large error value of 0.29 at ∆ =

0.036, k = 8 in Table 4.5.4. An inspection of the data revealed that the higher

time average is associated with a sudden and short-lived high amplitude spike

in the rms analysis error. A further analysis of the problem revealed that spikes

occur very rarely and they usually have small amplitude (smaller than 1). On rare

occasions, however, the spikes can have large amplitude (sometimes larger than

5), and they can last a few thousand time steps. This phenomenon is illustrated

by Figure 4.4, in which the large spike occurs after more than 194,000 time steps

(equivalent to about 133 years, assuming that one time step is equivalent to 6

hours) and lasts about 3,000 time steps (2 years in real time). The severity of this

problem was studied by carrying out several long term integrations with different

combinations of the tunable parameters. An interesting feature is that the spikes

do not destroy the overall stability of the cycle; the large errors always disappear

after a finite time and the mean error is smaller than 0.3. (For the case shown

in Figure 4.4 the time mean error is 0.23). Spikes occur regardless of the size

of the local region, and the type of the variance inflation scheme. They become

less frequent, however, as the rank and the variance inflation are increased. In

particular, no spikes were observed for ε ≥ 0.022. This suggests that the easiest

way to prevent the occurrence of spikes is to choose a large enough variance

inflation coefficient.

95



k 4 5 6 7 8 9

∆

0.020 D D 0.50 0.30 D D

0.024 D 0.87 0.42 0.21 0.21 0.21

0.028 0.21 0.36 0.20 0.20 0.20 0.20

0.032 0.20 0.20 0.20 0.20 0.20 0.20

0.036 0.20 0.20 0.20 0.20 0.29 0.20

0.040 0.20 0.20 0.20 0.20 0.20 0.20

0.044 0.20 0.20 0.20 0.20 0.20 0.20

0.048 0.20 0.20 0.20 0.20 0.20 0.20

Table 4.3: Dependence of the rms analysis error on ∆ in the regular variance

inflation scheme and the rank (k) of the background error covariance matrix.

The meaning of D is the same as in Table 4.1. The window size is 13.
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All results shown so far were obtained using (4.90) to generate the anal-

ysis ensemble, Xa
m. This scheme results in analyis pertrubations of the form

δx
a(i)
m = δx

a(i)(‖)
m + δx

a(i)(⊥)
m as required by (4.32)-(4.35). In order to test the

importance of including the small δx
a(i)(⊥)
m = x

b(i)(⊥)
m component, the first exper-

iment was repeated by using solution 1 [(4.52)] for Zm and δx
a(i)(⊥)
m = 0 instead

of (4.35). (Using solution 1 and (4.35) would give the same result as (4.90) for

our choice of Rmn = I.) This modified scheme, restricting the analysis pertur-

bations to the k dimensional space Sm, is clearly inferior (compare Tables 4.2

and 4.4 and Tables 4.5.4 and 4.5). More precisely, the constrained scheme pro-

vides stable analysis cycles only if both k and ε are relatively large. This is not

unexpected, since setting the component δx
a(i)(⊥)
m to zero artificially reduces the

total variance, ‖δxa(i)
m ‖2. Increasing k decreases the reduction in the total vari-

ance, while increasing ε compensates for an increasing part of the lost variance.

Also, the constrained scheme is more stable when the enhanced variance infla-

tion is used, indicating that correcting the distribution of the variance is not less

important than increasing the total variance.

Finally, we note that we have also performed tests of our data assimilation

method using the Lorenz model (4.86), again with F = 8, but with periodicity

length L greater than 40. Choosing l, k, and ε values that, for L = 40, gave

the lowest mean error (0.2), we found that the mean error does not change with

increasing L up to L = 400. This is roughly consistent with the supposition

of an effective correlation length for the dynamics that is less than L. Thus our

method appears to be effective on large systems of this type. Moreover, the (non-

parallelized) analysis computational time scales linearly with the number of local

regions (i.e., with L). This favorable scaling is to be expected, since the analysis
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k 4 5 6 7 8 9

inflation coefficient ε

0.010 D D D 0.41 0.20 0.20

0.012 D D D 0.27 0.20 0.20

0.014 D D D 0.21 0.20 0.20

0.016 D D D 0.21 0.20 0.20

0.018 D D 0.46 0.21 0.20 0.20

0.020 D D 0.28 0.21 0.20 0.20

0.022 D D 0.23 0.21 0.20 0.21

0.024 D D 0.22 0.21 0.21 0.21

Table 4.4: Same as Table 4.2 except that Solution 1 and δx
a(i)(⊥)
m = 0 is used

(instead of 4.90) to obtain the analysis ensemble.
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k 4 5 6 7 8 9

∆

0.020 D D D D D D

0.024 D D D D 0.75 0.21

0.028 D D D D 0.22 0.21

0.032 D D D D D 0.20

0.036 D D D D 0.21 0.25

0.040 D D D 0.22 0.21 0.20

0.044 D D D D 0.20 0.20

0.048 D D D 0.25 0.20 0.20

Table 4.5: Same as Table 4.3 except that Solution 1 and δx
a(i)(⊥)
m = 0 is used

(instead of 4.90) to obtain the analysis ensemble.
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computation size in each local region is independent of L.

4.6 Summary and conclusions

In this work, we have introduced a local method for assimilating atmospheric

data to determine best-guess current atmospheric states. Our method, which we

call a Local Ensemble Kalman Filter is motivated by recent studies (Patil et al.

2001, 2002) that have shown that vectors of the forecast uncertainties in local

regions of moderate size tend to lie in subspaces whose dimension is relatively

low. The main steps in our method are the following.

• The global analysis perturbations are advanced by the atmospheric model

to obtain the global background perturbations at the next analysis time.

• In each local region, each background perturbation from the ensemble mean

is used to construct a ‘local vector’.

• The observations are assimilated in each local region.

• The local analyses are used to determine the global analysis and the global

analysis perturbations. The cycle is then repeated.

Numerical tests of the our method using the Lorenz model, (4.86), have been

performed. These tests indicate that the method is potentially very effective in

assimilating data. Other potential favorable features of our method are that only

low dimensional matrix operations are required, and that the analyses in each of

the local regions are independent, suggesting the use of efficient parallel compu-

tation. These features should make possible fast data assimilation in operational

settings. This is supported by preliminary work (not reported here) in which we
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have implemented the our method on the T62, 28-level version of the National

Centers for Environmental Prediction Medium Range Forecasting Model (NCEP

MRF). The assimilation of a total number of 1.5 × 106 observations (including

wind, temperature, and surface pressure observations) at k′ = k = 9 takes about

20 minutes CPU time on a single 1 GHz Intel processor and about 12 minutes

CPU time on a single SP2 Winterhawk node.
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Appendix A: Global continuity of matrix square

roots

Not all matrix square root definitions yield global continuity. One particular

important mechanism for non-global-continuity of matrix square roots is that

the eigenvectors of a globally continuous, symmetric, non-negative matrix, M(r),

may not be definable in a globally continuous manner. In particular, for smooth

variation of M(r) in two dimensions, it can be shown that there will generically

be isolated points in space where two of the eigenvalues of M(r) are equal. Fol-

lowing previous terminology in the field of quantum chaos (e.g., Ott 2002), we call

such points “diabolical points” (e.g., Berry 1983). Assume that two eigenvalues

of M(r) denoted ξ1(r) and ξ2(r), are equal at the diabolical point r = rd, and de-
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note their associated orthonormal eigenvectors by v1(r) and v2(r). Now consider

starting at a point ro �= rd and following a continuous path C that encircles rd

and return to ro. Then it can be shown that, with continuous variation of v1(r)

and v2(r) along the path, their directions are flipped by 180◦ upon returns to ro.

This presents no contradiction, since orthonormal eigenvectors are arbitrary up

to within a change of sign, but it shows that v1(r) and v2(r) cannot be defined

in a globally continuous manner. The positive symmetric square root
(
M(r)

)1/2
,

(
M(r)

)1/2
=
∑

j

ξ
1/2
j (r)vj(r)v

T
j (r),

is globally continuous because vj(r)v
T
j (r) returns to itself upon circuit around

a diabolical point, even though vj(r) may flip by 180◦. Thus the solutions for

Zmn given in (4.52), (4.56), and (4.65) will be globally continuous, since positive

symmetric square roots are used. The Cholesky square root will also yield global

continuity. On the other hand, as an example of one of the choices that is

unsatisfactory, the matrix square root choice,

√
M(r) =

(
M(r)

)1/2[
v1(r) | v2(r) | · · ·

]T
is clearly not globally continuous if diabolical points are present.

Appendix B: Equivalence of (4.75) and (4.76) for

Ymn and Solution 3 for Zmn

In this Appendix we show that Zmn]X̂b
mn with Zmn given by (4.65) and X̂b

mnYmn

with Ymn given by (4.75) and (4.76) both yield the same result for X̂a
mn. To see

this we assume that Zmn and Ymn yield the same X̂a
mn as would be the case for
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(4.84). Thus ZmnX̂
b
mn = X̂b

mnYmn. Premultiplying both sides of this equation

by X̂bT
mn we obtain

(
Pb

mn

)1/2[(
Pb

mn

)−1/2
Zmn

(
Pb

mn

)1/2](
Pb

mn

)1/2
= X̂b

mnYmnX̂
bT
mn. (4.89)

Thus by (4.89) our choice of the symmetric square root, (4.76), implies that(
Pb

mn

)−1/2
Zmn

(
Pb

mn

)1/2
is also symmetric, which by the discussion in section

4.4.2 implies solution 3.

Appendix C: Xa
mn obtained directly from Ymn

In this Appendix we show that Ymn as given by (4.84) can be used to obtain

the analysis Xa
mn directly. That is, our specification (4.84) has so far been shown

to yield the analysis component, δx
a(i)(‖)
mn = Qmnδx̂

a(i)
mn , in the low dimensional

subspace Smn, but we now claim that the same Ymn can be applied to yield the

full analysis,

Xa
mn = Xb

mnYmn. (4.90)

(The crucial difference between (4.90) and (4.45) is the absence of the super-

scribed circumflexes in (4.90)). First we note that premultiplication of (4.90)

by Qmn returns (4.45), so that δx
a(i)(‖)
mn = QT

mnQmnX
b
mnYmn as required for the

analysis component in Smn. Operating on both sides of (4.90) with Λ
(⊥)
mn and

using X̂bT
mn = XbT

mnQmn in (4.84), we have

Λ(⊥)
mnX

a
mn = Λ(⊥)

mnXb
mnX

bT
mnQmnP̂

b−1(Zmn − I)X̂b
mn + Λ(⊥)

mnX
b
mn. (4.91)

Now we recall from section 4.2 that Smn and S̄mn are consructed from spanning

vectors that are eigenvectors of Pb′
mn. Thus Smn and S̄mn are invariant under Pb′

mn.
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Since Pb′
mn = Xb

mnX
bT
mn (see equation 4.10), we have that Xb

mnX
bT
mn commute with

the projection operators Λ
(‖)
mn and Λ

(⊥)
mn . Thus

Λ(⊥)
mnXb

mnX
bT
mnQmn = Xb

mnX
bT
mnΛ

(⊥)
mnQmn = 0, (4.92)

where the second equality follows because Qmnŵ is in Smn for any k-dimensional

column vector w, thus yielding Λ
(⊥)
mnQmn = 0. From (4.91) and (4.92) we have

Λ
(⊥)
mnXa

mn = Λ
(⊥)
mnXb

mn or δx
a(i)(⊥)
mn = δx

b(i)(⊥)
mn , as required by (4.35). This es-

tablishes (4.90). We find that use of (4.90) can be potentially advantegous for

efficient parallel implementation of our method. We plan to further discuss this in

a future publication applying our local ensemble Kalman filter to the operational

global model of the National Centers for Environmental Prediction.

Appendix D: Enhanced Variance Inflation

In section 4.4.6 we mentioned the modification of Pa
mn or Pb

mn to prevent the

occurrence of small eigenvalues in these matrices. Furthermore, we noted the

possibility of an accompanying modification of the corresponding ensemble per-

turbations, so as to preserve the relation,

P̂mn =
1

k′

k′+1∑
i=1

δx̂(i)
mn

(
δx̂(i)

mn

)T
. (4.93)

In the above equation we have suppressed the superscript a or b with the under-

standing that (4.93) can apply to either the analysis or background.

We consider the example where P̂mn is changed to a new covariance matrix

by addition of a small perturbation in the form,

P̂∗
mn = P̂mn +

εΛ

k
Ik, ε > 0, (4.94)
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Figure 4.5: The effect of the enhanced variance inflation (equation 4.94) on the

probability ellipsoid. For the special case P̂mn = P̂b
mn, η

(1)
mn = λ

(1)
mn and η

(2)
mn = λ

(2)
mn.
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where Ik denotes the k × k unit matrix, and Λ is the trace of P̂mn; i.e., it is the

sum of its eigenvalues, and thus represents the total variance of the ensemble.

(The case k = 2 is illustrated in Figure 4.5.) Hence (4.94) increases the total

variance by the factor (1 + ε), where we regard ε as small, 1 	 ε > 0. More

importantly, for small ε, the additional variance represented in (4.94) results in

a relatively small change in the largest eigenvalues of P̂mn, but prevents any

eigenvalue from dropping below εΛ/k, thus effectively providing a floor on the

variance in any eigendirection. Having modified P̂mn to P̂∗
mn via (4.94), we now

consider the modification of the ensemble perturbations, δx̂
(i)
mn, to another set of

ensemble perturbations, δx̂
(i)∗
mn , with the perturbed covariance,

P̂∗
mn =

1

k′

k′+1∑
i=1

δx̂(i)∗
mn

(
δx̂(i)∗

mn

)T
. (4.95)

We use the result of sections 4.4.2 and 4.4.4 to choose the δx̂
(i)∗
mn to minimize the

difference with δx̂
(i)
mn. This result is the same for all metrics Dmn that commute

with P̂mn (equivalently P̂∗
mn). (Note that the solutions in (4.60) are all the same

if Dmn, P̂a
mn and P̂b

mn commute.) Adopting this solution for δx̂
(i)∗
mn , we introduce

the orthogonal eigenvectors of P̂mn, which we denote w
(j)
mn. The result for δx̂

(i)∗
mn

is then

δx̂∗
mn = Z∗

mnδx̂mn, (4.96)

where

Z∗
mn =

k∑
j=1

ξ(j)
mnw

(j)
mn

(
w(j)

mn

)T
(4.97)

with

ξ(j)
mn =

√
1 + εΛ/kη

(j)
mn, (4.98)

and η
(j)
mn is the eigenvalue of P̂mn corresponding to w

(j)
mn; that is, P̂

(j)
mnw

(j)
mn =

η
(j)
mnw

(j)
mn.
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Recalling that P̂b
mn is diagonal (see (4.23)), we see that in the case P̂mn = P̂b

mn

(which is employed in section 4.5) the ith component of the vector wj
mn is δij .

Consequently, for this case, (4.97) and (4.98) imply that Z∗
mn is diagonal,

Z∗
mn = diag(ξ1, ξ2, · · · , ξk). (4.99)

In the case P̂mn = P̂a
mn, one could combine variance inflation and a procedure

for obtaining the analysis ensemble
{
δx̂

a(i)
mn

}
(e.g., solutions 1, 2,, or 3 of section

4.4.2): First inflate P̂a
mn,

P̂a∗
mn = P̂a

mn + Ĝa
mn,

where Ĝa
mn is any chosen inflation; and, second, replace P̂a

mn by P̂a∗
mn in the

chosen algorithm for determining the analysis ensemble (e.g., section 4.4.2).
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