This Site

Applied Dynamics Seminar Series


Applied Dynamics Seminar Series


Thursdays, 12:30 p.m.


IREAP Large Conference Room (ERF 1207)

Subscribe to our mailing list for announcements sending an email to with no subject, and SUBSCRIBE APPLIED-DYNAMICS [Your full name] or SUBSCRIBE APPLIED-DYNAMICS [Anonymous] (no square brackets) in the body of the email. An email signature might prevent your subscription command from working.


September 13, 2018

No seminar


September 20, 2018

Statistical Description of Hamiltonian Mixed Phase Space Systems

Prof. Shmuel Fishman

Technion University | Department of Physics

Abstract: Typical physical systems follow deterministic behavior. This behavior can be sensitive to initial conditions, such that it is very difficult to predict their behavior in the longtime limit. The resulting motion is chaotic and looks stochastic or random. In many cases the motion is described by a Hamiltonian and the energy is conserved. The motion can be also regular, that is predictable. In the work reported here we studied systems where depending on initial conditions the motion is either regular or chaotic. The simplest systems of this type are of two degrees--of--freedom, or periodically kicked systems with one degree--of--freedom. For this type of systems transport in the chaotic regions of phase space is dominated by sticking to complicated structures in the vicinity of the regular region. The probability to stay in the vicinity of the initial point is a power law in time characterized by some exponent. The question of the value of this exponent and its universality is the subject of a long controversy. We have developed a statistical description for this type of systems, where statistics are with respect to parameter or family of systems rather than to initial conditions. Following previous studies, it is based on a scaling of periodic and quasi-periodic orbits in a way which relies heavily on number theory. We have found an indication that the statistics of scaling is parameter independent and might be relevant for a wider universality class including the systems we explored. This statistical description is implemented in a stochastic Markov model proposed by Meiss and Ott in 1986. Even though many approximations are used, it predicts important results quantitatively, showing the power law decay exponent to be approximately 51.57 in agreement with direct simulations done in this work and also other works. Its universality is inferred from the universality of the scaling statistics. The model systems used in this work are paradigms for chaotic dynamics (the H'enon map and the standard map) therefore it might indicate a wider universality class. Quantum manifestation of this phenomenon and its relevance for time correlations, is showing different behavior for increasing effective Planck's constant, namely, the Planck's constant divided by the typical action. By using recent results regarding the universality of wave function transmission across barriers in phase space, we generalize the use of the Markov model to describe the results after some modification. The work reported was done in collaboration with Or Alus, James Meiss and Mark Srednicki


September 27, 2018

Prediction of complex spatiotemporal evolution through machine learning methods improved with the addition of observers

Prof. George Tsironis

Department of Physics | University of Crete

Abstract: Can we use machine learning (ML) to predict the evolution of complex, chaotic systems? The recent Maryland-based work showed that the answer is conditionally affirmative once we use some additional “help” provided by a random bath and observers, as defined through reservoir computing (RC) [1]. What about using other “standard” ML methods in forecasting the future of complex systems? The ETH-MIT group showed that the long-short-term-memory (LSTM) method may work in general spatiotemporal evolution of the Kuramoto type [2]. Our work (Crete-Harvard) focused on the following question: Under what circumstances ML can predict spatiotemporal structures that emerge in complex evolution that involves nonlinearity as well as some form of stochasticity? To address this question we used two extreme phenomena, one being turbulent chimeras while the second involves stochastic branching. The former phenomenon generates partially coherent structures in highly nonlinear oscillators interacting through short or long range coupling while the latter appears in wave propagation in weakly disordered media. Examples of the former include biological networks, SQUIDs (superconducting quantum interference devices), coupled lasers, etc while the latter geophysical waves, electronic motion in a graphene surface and other similar wave propagation configurations. In our work we applied and compared three ML methods, viz. LSTM, RC as well as the standard Feed-Forward neural networks (FNNs) in the two extreme spatiotemporal phenomena dominated by coherence, i.e. chimeras, and stochasticity, i.e. branching, respectively [3]. In order to increase the predictability of the methods we augmented LSTM (and FNNs) with observers; specifically we assigned one LSTM network to each system node except for "observer" nodes which provide continual "ground truth" measurements as input; we refer to this method as "Observer LSTM" (OLSTM). We found that even a small number of observers greatly improves the data-driven (model-free) long-term forecasting capability of the LSTM networks and provide the framework for a consistent comparison between the RC and LSTM methods. We find that RC requires smaller training datasets than OLSTMs, but the latter requires fewer observers. Both methods are benchmarked against Feed-Forward neural networks (FNNs), also trained to make predictions with observers (OFNNs). [1] Z. Lu Z, J. Pathak, B. Hunt, M. Girvan, R. Brockett and E. Ott, Reservoir observers: Model free inference of unmeasured variables in chaotic systems. Chaos 27, 041102 (2017); J. Pathak, B. Hunt,M. Girvan, Z. Lu and E. Ott, Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach, Phys. Rev. Let. 120, 024102 (2018) [2] P. R. Vlachas, W. Byeon, Z. Y. Wan, T. P. Sapsis and P. Koumoutsakos, Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks. Proc.R.Soc.A 474, 20170844 (2018). [3] G. Neofotistos, M. Mattheakis, G. D. Barmparis, J. Hizanidis, G. P. Tsironis and E. Kaxiras, Machine learning with observers predicts complex spatiotemporal evolution, arXiv 1807.10758 (2018)


October 4, 2018

Due to unforeseen circumstances, we have a new speaker for this date

Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation

Dr. Safa Motesharrei

University of Maryland | Department of Physics

Abstract: Wind and solar farms offer a major pathway to clean, renewable energies. However, these farms would significantly change land surface properties, and, if sufficiently large, the farms may lead to unintended climate consequences. In this study, we used a climate model with dynamic vegetation to show that large-scale installations of wind and solar farms covering the Sahara lead to a local temperature increase and more than a twofold precipitation increase, especially in the Sahel, through increased surface friction and reduced albedo. The resulting increase in vegetation further enhances precipitation, creating a positive albedo–precipitation–vegetation feedback that contributes ~80% of the precipitation increase for wind farms. This local enhancement is scale dependent and is particular to the Sahara, with small impacts in other deserts.


October 11, 2018

Constructing Chaotic Coordinates for non-integrable dynamical systems

Dr. Stuart Hudson

Princeton Plasma Physics Laboratory

Abstract: Action-angle coordinates can be constructed for so-called integrable Hamiltonian dynamical systems, for which there exists a foliation of phase space by surfaces that are invariant under the dynamical flow. Perturbations generally destroy integrability. However, we know that periodic orbits will survive, as will cantori, as will the "KAM" surfaces that have sufficiently irrational frequency, depending on the perturbation. There will also be irregular "chaotic" trajectories. By "fitting" the coordinates to the invariant structure that are robust to perturbation, action-angle coordinates may be generalized to non-integrable dynamical systems. These coordinates "capture" the invariant dynamics and neatly partition the chaotic regions. These so-called chaotic coordinates are based on a construction of almost-invariant surfaces known as ghost surfaces. The theoretical definition and numerical construction of ghost surfaces and chaotic coordinates will be described and illustrated.


October 18, 2018

Bifurcations in dynamical control systems for aerospace applications

Prof. Derek Paley

University of Maryland | Department of Aerospace Engineering

Abstract: This talk will discuss bifurcations in several dynamical control systems that arise in aerospace engineering applications. First, I will present the swimming dynamics and control of a flexible underwater robot based on closed-loop control of an internal reaction wheel. The feedback law stabilizes a limit cycle about the desired heading angle and produces forward swimming motion. Analysis of a global bifurcation in the dynamics under feedback control reveals the set of control gains that yields the desired limit cycle. Second, I will discuss a nonlinear control system consisting of a single vortex in a freestream near an actuated cylinder that represents an airfoil under a conformal mapping. Using heaving and/or surging of the cylinder as input stabilizes the vortex position relative to the cylinder. The closed-loop system utilizes a linear state-feedback control law, which gives rise to several bifurcations by varying the control gains. Lastly, time permitting, I will discuss a state-space model for representing the lift of an airfoil at high angles of attack. A feedback controller stabilizes a limit cycle in the angle of attack that provides greater (average) lift than a static pitch angle. In all three examples, incorporating dynamical systems theory complements the state-space modeling and control design.


October 25, 2018 - Room change: AV Williams 1147

A method for numerical computation starting from a quasiperiodic trajectory

Prof. Evelyn Sander

George Mason University | Department of Mathematics

Abstract: A trajectory is quasiperiodic if the trajectory lies on and is dense in some d-dimensional torus, and there is a choice of coordinates on the torus for which F has the form of a rigid rotation on the torus with rotation vector rho. There is an extensive literature on determining the rotation vector associate with F, as well finding Fourier components to establish these conjugacies. I will present two new methods with very good convergence rates: the Weighted Birkhoff Method and the Embedding Continuation Method. They are based on the Takens Embedding Theorem and the Birkhoff Ergodic Theorem. I will illustrate these for one- and two-dimensional examples ideas by computing rotation vectors or numbers, computing Fourier components for conjugacies, and distinguishing chaos versus quasiperiodic behavior.


November 1, 2018

Neuronal coding in the insect olfactory system

Prof. Quentin Gaudry

University of Maryland | Department of Biology

Abstract: The world is full of volatile chemical cues that animals must decipher to detect the presence of prey, predators, and even potential mates. The olfactory system is burdened with the task of interpreting a near infinite amount of odors given a limited repository of chemoreceptors. Studies emphasizing invertebrates have provided tremendous insight into the basic mechanisms of olfaction, and the highly analogous organization of invertebrate and mammal olfactory systems suggests that such studies can shed light upon how our own sense of smell functions. In this seminar, I will discuss data from Drosophila melanogaster and locusts revealing how olfactory information is transformed at subsequent stages of processing. Finally, I will discuss data from my own laboratory showing how neuromodulatory neurons that alter the sensory processing interact with the olfactory system.


November 8, 2018

Modeling methodologies for personal protection control strategies in vector-borne disease epidemiology: The role of diversity amplification

Dr. Jeff Demers

University of Maryland | Department of Biology

Abstract: Personal Protection measures, such as bed nets and personal repellents, are important tools for the suppression of vector-borne diseases like malaria and Zika, and the ability of health agencies to distribute protection and encourage its use plays an important role in the efficacy of community-wide disease management strategies. Recent modeling studies have shown that a counterintuitive diversity-driven amplification in community-wide disease levels can result from a population's partial adoption of personal protection measures, potentially to the detriment of disease management efforts. This finding, however, may overestimate the negative impact of partial personal protection as a result of implicit restrictive model assumptions regarding host compliance, access to, and longevity of protection measures. We establish a new modeling methodology for incorporating community-wide personal protection distribution programs in vector-borne disease systems which flexibly accounts for compliance, access, longevity, and control strategies by way of a flow between protected and unprotected populations. Our methodology yields large reductions in the severity and occurrence of amplification effects as compared to existing models.


November 15, 2018

Transiently Chaotic behavior in Superconducting Metamaterials

Amitava Banerjee

University of Maryland | Department of Physics

Abstract: In this seminar, we attempt to connect two of the major research vistas in nonlinear dynamics, namely, chimera states and chaos. We consider a simplified mathematical model of a one-dimensional lattice of coupled superconducting quantum interference devices (SQUIDs) driven by an external magnetic field [1,2]. We numerically simulate chimeras and other collective states in the magnetic flux oscillations through the SQUIDs and show that they are born through chaotic dynamics on finite time scales. We demonstrate the signatures of transient chaos in flux oscillations with fluctuating amplitudes, exponential escape time distribution, and fractal Wada basins of attraction for chimera states [1,3]. This study complements the identification of chimeras as transiently chaotic states themselves [4,5], and may be useful for prediction, characterization and control of such states.

References: 1. A. Banerjee and D. Sikder, Phys. Rev. E 98, 032220 (2018). 2. M. Trepanier, D. Zhang, O. Mukhanov, V. P. Koshelets, P. Jung, S. Butz, E. Ott, T. M. Antonsen, A. V. Ustinov, and S. M. Anlage, Phys. Rev. E 95, 050201(R) (2017). 3. Y.-C. Lai and T. Tel, Transient Chaos (Springer, New York, 2011). 4. M. Wolfrum and O. E. Omelchenko, Phys. Rev. E 84, 015201(R) (2011). 5. M. Wolfrum, O. E. Omelchenko, S. Yanchuk, and Y. L. Maistrenko, Chaos 21, 013112 (2011).


November 22, 2018

Thanksgiving Break - No seminar


November 29, 2018

Confining charged particle orbits using hidden symmetry

Dr. Matt Landreman

University of Maryland | IREAP

Abstract: TBD


December 6, 2018


Prof. Konstantina Trivisa

University of Maryland | Department of Mathematics and IPST

Abstract: TBA


2018 Archive | 2017 Archive | 2016 Archive | 2015 Archive