J. Phys. D - Appl. Phys. 50, 490201 (2017)https://ireap.umd.edu/10.1088/1361-6463/aa95c82017
Gottlieb S. Oehrlein Satoshi Hamaguchi Achim Von Keudell
Journal ArticleAdvanced Materials and Nanotechnology

State-of-the-art technologies are increasingly demanding materials and thin film processing technologies that offer control at atomistic length scales. These requirements are pushing plasma-based processing techniques towards fundamental limits with regard to modification, deposition, and etching of materials. The goal of achieving atomistic control in plasma–material interactions may be viewed as a grand challenge of low-temperature plasma science and technology. It involves the need to control the interaction of multiple particle fluxes that are characteristic of the plasma state, including electrons, ions, radicals, excited neutrals and photons, with surfaces and to regulate the consequences of these interactions towards desired atomistic outcomes.

The challenge of atomistic control in plasma–material interactions provides the unifying perspective of this Special Issue. The collection of invited reviews and current research articles of the issue illustrates various aspects of the overall challenge. The presentation of a related number of coordinated topics was intended to (1) illustrate the achievements and state of the art of fundamental research and technical capabilities in different areas of application, (2) identify areas where we either lack sufficient understanding to achieve this goal or where our current plasma-surface interaction approaches provide insufficient control, and (3) clarify the scientific knowledge and potential advances required for low temperature plasma-based methods to be successful against the goal of achieving atomistic control in plasma–surface interactions.


Top